PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

In silico design of self-assembly nanostructured polymer systems by multiscale molecular modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fast development of digitalization and computational science is opening new possibilities for a rapid design of new materials. Computational tools coupled with focused experiments can be successfully used for the design of new nanostructured materials in different sectors, particularly in the area of biomedical applications. This paper starts with a general introduction on the future of computational tools for the design of new materials and introduces the paradigm of multiscale molecular modeling. It then continues with the description of the multiscale (i.e., atomistic, mesoscale and finite element calculations) computational recipe for the prediction of novel materials and structures for biomedical applications. Finally, the comparison of in silico and experimental results on selected systems of interest in the area of life sciences is reported and discussed. The quality of the agreement obtained between virtual and real data for such complex systems indeed confirms the validity of computational tools for the design of nanostructured polymer systems for biomedical applications.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
autor
  • Molecular Biology and Nanotechnology Laboratory – MolBNL@UniTs, University of Trieste, Department of Engineering and Architecture (DEA), Piazzale Europa 1, 34127 Trieste, Italy
  • Molecular Biology and Nanotechnology Laboratory – MolBNL@UniTs, University of Trieste, Department of Engineering and Architecture (DEA), Piazzale Europa 1, 34127 Trieste, Italy
  • Molecular Biology and Nanotechnology Laboratory – MolBNL@UniTs, University of Trieste, Department of Engineering and Architecture (DEA), Piazzale Europa 1, 34127 Trieste, Italy
  • Molecular Biology and Nanotechnology Laboratory – MolBNL@UniTs, University of Trieste, Department of Engineering and Architecture (DEA), Piazzale Europa 1, 34127 Trieste, Italy
Bibliografia
  • 1. Plunket J.W., Plunkett’s Nanotechnology & Mems Industry Almanac 2017: Nanotechnology & Mems Industry Market Research, Statistics, Trends & Leading Companies, 30 May 2017, Editor Plunkett’s Nanotechnology & Mems Industry Almanac.
  • 2. White A., The Materials Genome Initiative: One year on, MRS Bull., 2012; 37:715–716.
  • 3. Hermann M., Pentek T., Otto B., Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS), Koloa, H.I., 2016, 3928 (doi: 10.1109/HICSS.2016.488).
  • 4. Roco M.C., Bainbridge WS, Tonn B., Whitesides G., (Eds.), Convergence of Knowledge, Technology and Society. Beyond Convergence of Nano-Bio-Info-Cognitive Technologies. Springer Verlag, 2013.
  • 5. Scot T., Walsh A., Anderson B., O’Connor A., Economic Analysis of National Needs for Technology Infrastructure to Support the Materials Genome Initiative, 2018, Final Report, RTI International Project Number 0215231,
  • 6. Charpentier J.C., The triplet “molecular processes–product–process” engineering: the future of chemical engineering ?, Chem. Eng. Sci., 2002; 57:4667–4690.
  • 7. Glotzer S.C., Paul W., Molecular and Mesoscale Simulation Methods for Polymer Materials, Annu. Rev. Mater. Res., 2002; 32:401–436.
  • 8. Zeng QH, Yu AB, Lu GQ, Multiscale modeling and simulation of polymer nanocomposites, Progr. Polym. Sci., 2008, 33, 191–269.
  • 9. Jancar J., Douglas J.F., Starr F.W., Kumar S.K., Cassgnau P., Lesser A.J., Sternstein S.S., Buehler M.J., Current issues in research on structure-property relationships in polymer nanocomposites, Polymer, 2010; 51:3321–3343.
  • 10. Yip S., Synergistic science, Nat. Mater., 2003; 2:3–5.
  • 11. Mohanty S., Ross R., Multiscale Simulation Methods for Nanomaterials, ed. Mohanty S. and Ross R., John Wiley & Sons, Hoboken, 2008, p.1.
  • 12. Scocchi G., Posocco P., Handgraaf J.W., Fraaije J.G.E.M., Fermeglia M., Pricl S., A Complete Multiscale Modelling Approach for Polymer–Clay Nanocomposites, Chem. Eur. J., 2009; 15:7586–7592.
  • 13. Pricl S., Posocco P., Scocchi G., Fermeglia M., Handbook of Nanophysics: Functional Nanomaterials, ed. K.D. Sattler, CRC Press, Boca Raton, 2010, pp. 3-1- 3-15.
  • 14. Pereira S.P., Scocchi G., Toth R., Posocco P., Romero-Nieto D., Pricl S., Fermeglia M., Multiscale modeling of polymer/clay nanocomposites, J. Multiscale Model., 2011; 3:151–176.
  • 15. Toth R., Santese F., Pereira S.P., Nieto D.R., Pricl S., Fermeglia M., Posocco P., ize and shape matter! A multiscale molecular simulation approach to polymer nanocomposites, J. Mater. Chem., 2012; 22:5398–5409.
  • 16. Mark F. Horstemeyer, Multiscale Modeling: A Review, 2009, in Practical Aspects of Computational Chemistry, Practical Aspects of Computational Chemistry, ed. J. Leszczynski and M.K. Shukla, Springer Science+Business Media, pp. 87–135.
  • 17. Steinhauser M.O., Hiermaier S., A Review of Computational Methods in Materials Science: Examples from Shock-Wave and Polymer Physics, Int. J. Mol. Sci., 2009; 10 (12):5135–5216.
  • 18. Curtin W.A., Miller R.E., Atomistic/continuum coupling in computational materials science, Modelling Simul. Mater. Sci. Eng,, 2003; 11(3):R33–R68.
  • 19. Yeo J., Jung G.S., Martín-Martínez F.J., Beem J., Qin Z., Buehler M.J., Multiscale Design of Graphyne-Based Materials for High-Performance Separation Membranes, Adv. Mater, 2019, DOI: 10.1002/adma.201805665.
  • 20. Casalini T., Perale G., From Microscale to Macroscale: Nine Orders of Magnitude for a Comprehensive Modeling of Hydrogels for Controlled Drug Delivery, Gels, 2019; 5:28.
  • 21. Moore G., “IEEE Technical Digest 1975” April 7, 1975, Intel Corp; “Moore’s Law in perspective,” 2005, Intel information sheet 306971-001US.
  • 22. de Baas A.F., What makes a material function? Let me compute the ways…, European Commission, Directorate-General for Research and Innovation, Directorate D - Industrial Technologies, Unit D3 – Advanced Materials and Nanotechnologies, Bruxelles, 2017 (doi 10.2777/417118).
  • 23. McWeeny R., Methods of Molecular Quantum Mechanics, 2nd Edition, Academic Press, Cambridge, 1992.
  • 24. Ercolessi F., Adams J.B., Interatomic Potentials from First-Principles Calculations: The Force-Matching Method, Europhys. Lett., 1994; 26:583.
  • 25. Fermeglia M., Ferrone M., Pricl S., Computer simulation of nylon-6/organoclay nanocomposites: prediction of the binding energy, Fluid. Phase. Equilib., 2003; 212:315–329.
  • 26. Vv. Aa., Molecular Simulations and Industrial Applications, ed. K.E. Gubbins and N. Quirke, Gordon & Breach, Amsterdam, 1996.
  • 27. Chen J.C., Kim A.S., Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems, Adv. Colloid Interface Sci., 2004; 112:159–173.
  • 28. Hoogerbrugge P.J., Koelman J.M.V.A., Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics, Europhys. Lett., 1992; 19:155.
  • 29. Groot R.D., Warren P.B., Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 1997; 107:4423.
  • 30. Chen S., Doolen G.D., Lattice Boltzmann Method for Fluid Flows, Annu. Rev. Fluid Mech., 1998; 30:329-364.
  • 31. Glotzer S.C., in Annual Reviews of Computational Physics, ed. Stauffer D., World Scientific, Singapore, pp. 1–46.
  • 32. Fraaije J.G.E.M., van Vlimmeren B.A.C., Maurits N.M., Postma M., Evers O.A., Hoffmann C., Altevogt P., Goldbeck-Wood G., The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts, J. Chem. Phys. 1997; 106:4260.
  • 33. Hughes T.J.R., The Finite Element Method, Prentice-Hall, Englewood Cliffs, 1987.
  • 34. Gusev A.A., Numerical Identification of the Potential of Whisker- and Platelet-Filled Polymers, Macromolecules, 2001; 34:3081–3093.
  • 35. Goddard III W.A., Cagin T., Blanco M., Vaidehi N., Dasgupta S., Floriano W., Belmares M., Kua J., Zamanakos G., Kashihara S., Iotov M., Gao G., Strategies for multiscale and simulation of organic materials: polymers and biopolymers, Comput. Theor. Polym. Sci., 2011; 11:329–343.
  • 36. McGrother S., Goldbeck-Wood G., Lam Y.M., Integration of modelling at various length and time scales, Lect. Notes Phys., 2004; 642:223–230.
  • 37. Scocchi G., Posocco P., Fermeglia M., Pricl S., Polymer−Clay Nanocomposites: A Multiscale Molecular Modeling Approach, J. Phys. Chem. B, 2007, 111, 2143–2151.
  • 38. Cosoli P., Scocchi G., Pricl S., Fermeglia M., Many-scale molecular simulation for ABS–MMT nanocomposites: Upgrading of industrial scraps, Microporous Mesoporous Mater., 2008; 107:169–179.
  • 39. Fermeglia M., Pricl S., Multiscale molecular modeling in nanostructured material design and process system engineering, Comput. Chem. Eng., 2009; 33:1701–1710.
  • 40. Doi M., Material modeling platform, J. Comput. Appl. Math., 2002; 149:13–25.
  • 41. Milano G., Müller-Plathe F., Mapping Atomistic Simulations to Mesoscopic Models: A Systematic Coarse-Graining Procedure for Vinyl Polymer Chains, J. Phys. Chem. B, 2005; 109:18609–18619.
  • 42. Toth R., Voorn D.J., Handgraaf J.W., Fraaije J.G.E.M., Fermeglia M., Pricl S., Posocco P., Multiscale Computer Simulation Studies of Water-Based Montmorillonite/Poly(ethylene oxide) Nanocomposites, Macromolecules, 2009; 42:8260–8270.
  • 43. Ghanbari A., Ndoro T.V.M., Leroy F., Rahimi M., Böhm M.C., Müller-Plathe F., Macromolecules, Interphase Structure in Silica–Polystyrene Nanocomposites: A Coarse-Grained Molecular Dynamics Study, 2012; 45:572–584.
  • 44. Müller-Plathe F., Coarse-Graining in Polymer Simulation: From the Atomistic to the Mesoscopic Scale and Back, Chem. Phys. Chem., 2002; 3:754–769.
  • 45. Fermeglia M., Pricl S., Multiscale modeling for polymer systems of industrial interest, Prog. Org. Coat., 2007; 5:187–199.
  • 46. Posocco P., Fermeglia M., Pricl .S., Morphology prediction of block copolymers for drug delivery by mesoscale simulations, J. Mat. Chem., 2010; 20:7742–7753.
  • 47. Posocco P., Gentilini C., Bidoggia S., Pace A., Franchi P., Lucarini M., Fermeglia M., Pricl S., Pasquato L., ACS Nano, 2012; 6:7243–7253.
  • 48. Pengo P., Sologan M., Pasquato L., Guida F., Pacor S., Tossi A., Stellacci F., Marson D., Boccardo S., Pricl S., Posocco P., Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives, Eur. Biophys. J., 2017; 46:749–771.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-681faae4-a4a5-4187-95ad-3c2467423d00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.