PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical validation of the improved vortex method applied to CP745 marine propeller model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a numerical analysis of the CP745 marine propeller model by means of the improved vortex method and CFD simulations. Both numerical approaches are validated experimentally by comparing with open water characteristics of the propeller. The introduced modification of the vortex method couples the lifting surface approach for the propeller blades and the boundary element method for the hub. What is more, a simple algorithm for determination of the propeller induced advance angles is established. The proposed modifications provide better results than the original version of the vortex method. The accuracy of the improved method becomes comparable to CFD predictions, being at the same time a few hundred times faster than CFD.
Słowa kluczowe
Rocznik
Tom
Strony
57--65
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Ship Design and Research Centre Szczecińska 65 80-392 Gdańsk, Poland
  • Gdańsk University of Technology Gabriela Narutowicza 11/12 80-233 Gdańsk Poland
autor
  • Gdańsk University of Technology Gabriela Narutowicza 11/12 80-233 Gdańsk Poland
Bibliografia
  • 1. D. Durante, G. Dubbioso, C. Testa: Simplified hydrodynamic models for the analysis of marine propellers in a wakefield, Journal of Hydrodynamics, Ser. B, Vol. 25, No. 6, pp. 954–965, 2013.
  • 2. J. H. Ferziger, M. Perić: Computational methods for fluid dynamics, Springer-Verlag, Berlin, 2002.
  • 3. S. Gaggero, J. Gonzalez-Adalid, M. Perez Sobrino: Design of contracted and tip loaded propellers by using boundary element methods and optimization algorithms, Applied Ocean Research, Vol. 55, pp. 102–129, 2016.
  • 4. D. S. Greeley, J. E. Kerwin: Numerical methods for propeller design and analysis in steady flow, SNAME Transactions, Vol. 90, pp. 415–453, 1982.
  • 5. ITTC – Recommend procedures and guidelines: model manufacture, propeller models, propeller model accuracy, Propulsion Committee of 24th ITTC 2005.
  • 6. ITTC – Recommend procedures and guidelines: testing and extrapolation methods, propulsion, propulsor open water test, Propulsion Committee of 24th ITTC 2014.
  • 7. H. Jarzyna, T. Koronowicz, J. Szantyr: Design of marine propellers, Selected problems, Ossolineum, Wroclaw 1996.
  • 8. L. Kobyliński: Marine propellers, Wyd. Komunikacyjne, Warszawa 1955 (in Polish).
  • 9. K. Koyama: Comparative calculations of propellers by surface panel method, Workshop organized by 20th ITTC Propulsor Committee, Papers of Ship Research Institute, 1993.
  • 10. P. Król, T. Bugalski, M. Wawrzusiszyn: Development of numerical methods for marine propeller – pre-swirl stator system design and analysis, SMP2017, Espoo, 2017.
  • 11. K.-J. Lee, T. Hoshino, J.-H. Lee: A lifting surface optimization method for the design of marine propeller blades, Ocean Engineering, Vol. 88, pp. 472–470, 2014.
  • 12. T. Lee, S. O. Park: Improved iteration algorithm for nonlinear vortex lattice method, Journal of Aircraft, Vol. 46, No. 6., 2009.
  • 13. G. Luca, M. Roberto, T. Claudio: Marine propellers performance and flow-field prediction by a free-wake panel method, Journal of Hydrodynamics, Vol. 26, No. 5, pp. 780–795, 2014.
  • 14. F. R. Menter: Two-equations eddy-viscosity turbulence models for engineering applications, AIAA-Journal, Vol. 32, No. 8, 1994.
  • 15. R. Muscari, A. Mascio, R. Verzicco: Modeling of vortex dynamics in the wake of a marine propeller, Computers & Fluids, Vol. 73, pp. 65–79, 2013.
  • 16. J. Noosomton, W. Gunnuang: Case study on CFD simulation and experiment of new developed propeller for training thai boat, SMP2017, Espoo, 2017.
  • 17. OpenFOAM user guide, OpenFOAM Foundation Ltd., 2015.
  • 18. OpenFOAM programmer’s guide, OpenFOAM Foundation Ltd., 2015.
  • 19. Y. Wang, M. Abdel-Maksound, P. Wang, B. Song: Simulate the PPTC propeller with a vortex particle-boundary element hybrid method, SMP2017, Espoo, 2017.
  • 20. D.C. Wilcox: Turbulence modeling for CFD, DCW Industries, 1994.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-681c96e4-1de8-42aa-937d-a889a49c5f5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.