PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of selected aspects of shaping of physical, mechanical and thermal properties and manufacturing technology of lightweight and ultra-lightweight autoclaved aerated concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przegląd wybranych aspektów kształtowania właściwości fizycznych, mechanicznych i cieplnych oraz technologii wytwarzania lekkiego i ultralekkiego betonu komórkowego
Języki publikacji
EN
Abstrakty
EN
The paper provides an overview of selected scientific articles presenting research carried out in recent years on methods for producing autoclaved aerated concrete. Traditional technologies are briefly presented, together with innovative solutions for the production of low-density and ultra-lowdensity materials. In addition to the presentation of the manufacturing methods themselves, the results of research into the properties of the autoclaved aerated concrete obtained and their dependence on the technology used are also presented. A subjective selection and review of articles covering research into the thermal conductivity of concrete, the technological factors influencing them and the ways in which they can be shaped was also carried out. A significant number of the cited articles do not function in the world scientific circulation due to the language barrier (they are mainly in Ukrainian). In the meantime, they contain interesting research results which can inspire further research into the issues discussed concerning the production technology and the thermal and strength properties of autoclaved aerated concrete, with particular emphasis on lightweight and ultra-lightweight concrete.
PL
W artykule dokonano przeglądu wybranych artykułów naukowych prezentujących prowadzone w ostatnich latach badania nad metodami wytwarzania betonu komórkowego. Przedstawiono skrótowo tradycyjne technologie oraz innowacyjne rozwiązania pozwalające uzyskać materiał o niskiej i bardzo niskiej gęstości. Poza prezentacją samych metod wytwarzania materiału przedstawiono także wyniki badań właściwości uzyskiwanego betonu komórkowego i ich zależność od zastosowanej technologii. Dokonano również subiektywnego wyboru i przeglądu artykułów obejmujących badania właściwości cieplnych betonu, czynników technologicznych mających na nie wpływ oraz sposobów ich kształtowania. Znaczna liczba cytowanych artykułów nie funkcjonuje w światowym obiegu naukowym ze względu na barierę językową (są one głównie w języku ukraińskim). Tymczasem zawierają one interesujące wyniki badań, które mogą być inspiracją do dalszych badań nad omawianymi zagadnieniami dotyczącymi technologii produkcji oraz właściwości cieplnych i wytrzymałościowych betonu komórkowego ze szczególnym uwzględnieniem betonu lekkiego i ultralekkiego.
Rocznik
Strony
385--402
Opis fizyczny
Bibliogr. 49 poz., il., tab.
Twórcy
  • Lviv Polytechnic National University, Institute of Chemistry and Chemical Technologies, Lviv, Ukraine
  • Warsaw University of Technology, Faculty of Civil Engineering Mechanics and Petrochemistry, Płock, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering Mechanics and Petrochemistry, Płock, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering Mechanics and Petrochemistry, Płock, Poland
Bibliografia
  • [1] U. Shayahmetov, A. Murzakova, "Технология наноструктурированной стеклокристаллической пенокерамики (Technology of Nanostructured Vitrocrystalline Ceramic Foam)", Vestnik Bashkirskogo Universiteta [Bulletin of the Bashkir University], vol. 19, 828-830, 2014.
  • [2] O. Poznyak and I. Zavadskyy, "Non-autoclaved aerated concrete", in: Proceedings of the VI International Scientific and Technical Conference of Young Scientists and Students. Actual Tasks of Modern Technologies, Ternopil, Ukraine, 2017, p. 151
  • [3] O. Poznyak and A. Melnyk, "Non-autoclaved aerated concrete made of modified binding composition containing supplementary cementitious materials", Budownictwo i Architektura, vol. 13, no. 2, pp. 127-134, 2014, DOI: 10.35784/bud-arch.1887
  • [4] N. Neithalath and K. Ramamurthy, "Structure and properties of aerated concrete: a review", Cement and Concrete Composites, vol. 22, no. 5, pp. 321-329, 2000, DOI: 10.1016/S0958-9465(00)00016-0
  • [5] A. Bonakdar, F. Babbitt and B. Mobasher, "Physical and mechanical characterization of Fiber-Reinforced Aerated Concrete (FRAC)", Cement and Concrete Composites. vol. 38, pp. 82-91, 2013, https://doi.org/10.1016/j.cemconcomp.2013.03.006
  • [6] R. Drochytka, J. Zach, A. Korjenic and J. Hroudová, "Improving the energy efficiency in buildings while reducing the waste using autoclaved aerated concrete made from power industry waste", Energy and Buildings. vol. 58, pp. 319-323, 2013, DOI: 10.1016/j.enbuild.2012.10.029
  • [7] M. Gunasekaran, G. Saranya, L. Elamaran, P. Sakthivel and P. Suresh, "Development of Light Weight Concrete by using Autoclaved Aerated Concrete", International Journal for Innovative Research in Science & Technology, vol. 2, no. 11, pp. 518-522, 2016. [Online]. Avilable http://www.ijirst.org/articles/IJIRSTV2I11218.pdf
  • [8] M. Garecki, "Nowe wymagania w zakresie izolacyjnści przegród budowlanych w systemach ECTIS - kierunki zmian", Izolacje no. 20 pp. 48-58, 2015.
  • [9] E. Muthu Kumar and K. Ramamurthy, "Effect of fineness and dosage of aluminium powder on the properties of moist-cured aerated concrete", Construction and Building Materials, vol. 95, pp. 486-496, 2015, DOI: 10.1016/j.conbuildmat.2015.07.122
  • [10] H. Kurama, İ.B. Topçu and C. Karakurt, "Properties of the autoclaved aerated concrete produced from coal bottom ash", Journal of Materials Processing Technology, vol. 209, no. 2, pp. 767-773, DOI: 10.1016/j.jmatprotec.2008.02.044
  • [11] I. Asadi, P. Shafigh, Z.F. Bin Abu Hassan and N.B. Mahyuddin, "Thermal conductivity of concrete - A review, Journal of Building Engineering, vol. 20, pp. 81-93, 2018, DOI: 10.1016/j.jobe.2018.07.002
  • [12] X. Qu and X. Zhao, "Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete - A review", Construction and Building Materials, vol. 135, pp. 505-516, 2017, DOI: 10.1016/j.conbuildmat.2016.12.208
  • [13] E.P. Kearsley and P.J. Wainwright, "Porosity and permeability of foamed concrete", Cement and Concrete Research, vol. 31, no. 5, pp. 805-812, 2001, DOI: 10.1016/S0008-8846(01)00490-2
  • [14] A.J. Hamad, "Materials, Production, Properties and Application of Aerated Lightweight Concrete: Review", International Journal of Materials Science and Engineering, vol. 2, no. 2, pp. 152-157, 2014, DOI: 10.12720/ijmse.2.2.152-157.
  • [15] A. Adilkhodjaev, B. Hasanov, S. Shaumarov and V. Kondrashchenko, "Aerated concrete with predetermined pore parameters for the exterior walls of energy efficient buildings", IOP Conference Series: Materials Science and Engineering, vol. 1030, art. no. 12006, 2021, DOI: 10.1088/1757-899X/1030/1/012006.
  • [16] V. Ocheretnyi, V. Kovalskyi, M. Mashnytskyi and A. Bondar, "Залежнисть теплотехнічних та фізико-механічних властивостей ніздрюватих бетонів від параметрів виготовлення (Dependence of thermal and physical-mechanical properties of cellular concrete on manufacturing parameters)", Suchasni Tekhnolohii, Materialy Ta Konstruktsii v Budivnytstvi (Modern Technology, Materials and Design in Construction), vol. 7, no. 2, pp. 34-39, 2009. [Online]. Availabel: https://stmkvb.vntu.edu.ua/index.php/stmkvb/article/view/53.
  • [17] A.N. Fylatov, T.N. Woodwood and V.A. Yvanenko, "Поризация сырьевой смеси в технологии ячеистого бетона (Pore Formation in a Raw Mix in Technology of Cellular Concrete)", Stroitel’nye Materialy (Construction Materials), pp. 28-33, 2012.
  • [18] V. Serdiuk, M. Lemeshev and O. Khrystych, "Золо-цементне в’яжуче дла виготовлення ніздрюватих бетонів (Ash-cement binder for the production of cellular concrete)", Suchasni Tekhnolohii, Materialy Ta Konstruktsii v Budivnytstvi (Modern Technology, Materials and Design in Construction), vol. 10, pp. 57-61, 2011.
  • [19] J. Bubeník, J. Zach, "The use of foam glass based aggregates for the production of ultra-lightweight porous concrete for the production of noise barrier wall panels", Transportation Research Procedia, vol. 40, pp. 639-646, 2019, DOI: 10.1016/j.trpro.2019.07.091
  • [20] L. Tang Van, D. Vu Kim, H. Ngo Xuan, T. Vu Dinh, B. Bulgakov and S. Bazhenova, "Effect of Aluminium Powder on Light-weight Aerated Concrete Properties", E3S Web of Conferences, vol. 97, art. no. 2005, 2019, DOI: 10.1051/e3sconf/20199702005
  • [21] V.V. Strokova, N.V. Pavlenko and M.N. Kapusta, "Принципы получения ячеистых фибробетонов с применением наноструктурированного вяжущего (Principles of Production of Fibro-Reinforced Cell-Concretes Based on Nanostructured Binder)", Academia. Arkhitektura I Stroitelʹstvo, vol. 3, pp. 114-117, 2013.
  • [22] X.G. Yu, D. Wu, H. Hao, Y. Zhang, H.C. Xu and Y.N. Rui, "Pore Structure and Microstructure of Super Light-Weight Foam Concrete Reinforced by Inorganic Fiber", Key Engineering Materials, vol. 591, pp. 50-53, 2013, DOI: 10.4028/www.scientific.net/KEM.591.50
  • [23] X.G. Yu, S.S. Luo, Y.N. Gao, H.F. Wang, Y.X. Li, Y.R. Wei and X.J. Wang, "Pore Structure and Microstructure of Foam Concrete", Advanced Materials Research, vol. 177, pp.530-532, 2010, 10.4028/www.scientific.net/AMR.177.530
  • [24] S.D. Lapovska, T.M. Demchenko, O.Y. Kovalchuk and V.O. Chornovol, "On the Question of the Application of Basalt Microfiber for Reinforcement of Thermal Insulation AAC", Key Engineering Materials, vol. 864, pp. 122-127, 2020, DOI: 10.4028/www.scientific.net/KEM.864.122
  • [25] M.A. Othuman Mydin, "Influence of micro synthetic fibers confinement on properties of lightweight foamed concrete", Archives of Civil Engineering, vol. 68, no. 3, pp. 411-428, 2022, DOI: 10.24425/ace.2022.141894.
  • [26] T. Kanstad, Fibre Reinforced Superlight Concrete: Testing of Materials and Full Scale Beams - COIN Project report no 15, Oslo, Norway, 2009.
  • [27] K.D. Hertz, "Super-light concrete with pearl-chains", Magazine of Concrete Research, vol. 61, no. 8, pp. 655-663, 2009, DOI: 10.1680/macr.2008.61.8.655
  • [28] N.V. Pavlenko, V.V. Strokova, A.V. Cherevatova, I.V. Zhernovskiy, V.V. Nelyubova and M.N. Kapusta, "Эффективность применения наноструктурированного вяжущего при получении ячеистых композитов (Efficiency of using a nanostructured binder in the production of cellular composites)", Stroitel’nye Materialy (Construction Materials), pp. 10-11, 2012.
  • [29] R. Othman, K. Muthusamy, M. Arif Sulaiman, Y. Duraisamy, R. Putra Jaya, C.B. Wei, M. Mustafa Al Bakri Abdullah, S. Mangi, M. Nabiałek and A. Śliwa, "Compressive strength and durability of foamed concrete incorporating Processed Spent Bleaching Earth", Archives of Civil Engineering, vol. 68, no. 2, pp. 627-643, 2022. DOI: 10.24425/ace.2022.140663
  • [30] O. Lobanov and V. Sviderskyi, "Вплив просочуючих складів на експлуатаційні властивості газобетонів (Influence of impregnating compositions on operational properties of aerated concrete)", Budivelʹni Materialy, Vyroby Ta Sanitarna Tekhnika (Building Materials, Products and Sanitary Ware), vol. 43, pp. 223-226, 2022.
  • [31] EN ISO 12571:2021, Hygrothermal performance of building materials and products - Determination of hygroscopic sorption properties, European Standard. (2021) 26.
  • [32] D.K. Panesar, "Cellular concrete properties and the effect of synthetic and protein foaming agents", Construction and Building Materials, vol. 44, pp. 575-584, 2013, DOI: 10.1016/j.conbuildmat.2013.03.024
  • [33] K. Sethy, G.S. Nayak, S.R. Nanda, "Aerated Concrete: A Revolutionary Construction Material", International Journal of Engineering Technology Science and Research, vol. 5, pp. 988-993, 2018.
  • [34] J. Newman and P. Owens, "Properties of Lightweight Concrete", in Advanced Concrete Technology 3: Processes., J. Newman, B.S. Choo, Eds. 2003: pp. 1-29.
  • [35] S.D. Lapovska, V.I. Klapchenko, G.Y. Krasnianskyi, Y.G. Gasan, I.O. Kuznetsova, "Optimization of the composition of hydrophobized cellular concrete according to its moisture-transporting and water-holding characteristics", IOP Conference Series: Materials Science and Engineering. 907 (2020) 12040. https://doi.org/10.1088/1757-899X/907/1/012040
  • [36] V.P. Vylegzhanin, V.A. Pinsker, "Influence of Porosity of Autoclaved Gas Concrete on Its Thermal Conductivity and Ways of Its Change Due To Improvement in Selection of Raw Components", Stroitel’nye Materialy [Construction Materials]. 8 (2019) 36-38. https://doi.org/10.31659/0585-430X-2019-773-8-36-38
  • [37] G. Zapotoczna-Sytek, J. Zmywaczyk, P. Koniorczyk, K. Lubińska, B. Górska, "Investigations of “thickness effect curve” in sand autoclaved aerated concrete (SAAC 500)", Cement Wapno Beton. vol. pp. 301-307.
  • [38] C.J. Shirtliffe, "Effect of Thickness on the Thermal Properties of Thick Specimens of Low-Density Thermal Insulation", in: Thermal Insulation Performance D.L. McElroy and R.P. Tye (Eds.), ASTM International 1980: pp. 36-50. https://doi.org/10.1520/STP29265S
  • [39] H. Garbalińska and M. Bochenek, "Post flood drying of partition walls made of autoclaved aerated concrete and the changes in thermal conductivity", Journal of Civil Engineering, Environment and Architecture, vol. 61, no. 3, pp 155-162, 2014, DOI: 10.7862/rb.2014.83
  • [40] T. Anikanova, S. Rakhimbayev and A. Pogromskiy, "Влияние теплового пристенного слоя на теплопроводность пористых и зернистых материалов [Influence of the thermal wall boundary layer on the heat conductivity of the porous and granular materials]", Vestnik BGTU Im. V.G. Shukhova [Bulletin of BSTU Named after V.G. Shukhov]. (2015) 42-46.
  • [41] V. Opiekunov, "Конструкційно-теплоізоляційні будівельні матеріали на основі активованих сировинних компонентів (Construction and thermal insulation building materials based on activated raw materials)", Kiev: Publishing house „Akademperiodyka”, Kiev, 2001.
  • [42] V. Opiekunov, O. Obodovych, O. Nedbailo, "Вирішення задач ресурсозбереження в будівництві шляхом використання якісних віробів із пористих бетонів (Solving resource conservation problems in construction through use quality products from porous concrete), Keramyka: Nauka Y Zhyznʹ (Ceramics: Science and Life), vol. 8 pp. 45-57, 2010.
  • [43] A. Zhukov, A. Chugunkov and P. Gudkov, "Geometrical Model and Forecasting Properties of Foam Mortar", Stroitel’stvo: Nauka I Obrazovanie (Construction: Science and Education), pp. 7-14, 2012, DOI: 10.22227/2305-5502.2012.2.2
  • [44] A. Cheilytko and S. Kushnir, "Енергозаощадження: визначення коефіцієнту теплопровідності пористих структур (Energy saving: determination of thermal conductivity coefficient of porous structures), in "Science and Practice: Implementation to Modern Society” 1st International Scientific and Practical Conference, C. Griffiths, Ed. Manchester, UK, Peal Press Ltd, 2019, pp. 31-35.
  • [45] O. Soloveva, S. Solovev and O. Popkova, "Моделирование трехмерной структуры высокопористых ячеистых материалов и анализ качества модели на примере расчета перепада давления (Modeling of the three-dimensional structure of open cell foam and analysis of the model quality using the example of press)", Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki (Scientific Notes of Kazan University. Physics and Mathematics Series). vol. 160, pp. 681-694, 2018.
  • [46] B. Vetter, P. Kofler, S. Fischer, H. Drück, Bestimmung der effektiven Wärmeleitfähigkeit von Wärmedämmmaterialien für Sonnenkollektoren (Determination of the effective thermal conductivity of thermal insulation materials for solar collectors), presented at OTTI - 25. Symposium Thermische Solarenergie, Bad Staffelstein, Germany, 2015.
  • [47] G. Schober, "Die chemischen Umsetzungen bei der Herstellung von Porenbeton: Aus Zement, Kalk, Gips und Quarzsand wird Porenbeton", Zement, Kalk, Gips International, vol. 58, pp. 63-70, 2005.
  • [48] V. Durieiev, "Прогрів пористого композиційного покриття (Heating of the porous composite coating), in Scientific and Practical seminar “Prevention of Emergencies and Their Elimination,” Kharkiv, Ukraine, 2019, pp. 150-151.
  • [49] S. Schmidt, "Minderung der Wärmeleitfähigkeit von Dünnbettmörtel bei gleichbleibender Druckfestigkeit (Reduction of the thermal conductivity of thin-bed mortar with the same compressive strength), PhD thesis, Martin-Luther-Universität Halle-Wittenberg, 2019, DOI: 10.25673/13502
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-681bc9f8-56da-41ce-aba4-cf48a9f03f85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.