PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FEA of displacements and stresses of aortic heart valve leaflets during the opening phase

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Modelling of biomechanical behaviour of heart valve materials aids improvement of biofunctional feature. The aim of the work was assessment of influence of material thickness of leaflets of artificial aortic valve on displacements and stresses during opening phase using finite element analysis (FEA). Design/methodology/approach: The model of aortic valve was developed on the basis of average anatomical valve shapes and dimensions. Nonlinear dynamic large displacements analysis with assumption of isotropic linear elastic material behaviour was used in simulation (Solidworks). The modulus of elasticity of 5.0 MPa was assumed and Poisson ratio set to 0.45. The rigidly supported leaflets was loaded by pressure increasing in the range 0-55 mmHg in time 0.1 s. Leaflets with material thickness 0.13 and 0.15 and 0.17 mm were analysed. The thickness was simulated with shell finite elements. Findings: The highest stresses were observed in the areas of fixation of the leaflets near the scaffold and were lower than dangerous value of fatigue of polyurethanes. Increasing the thickness of valve leaflet material in the range of 40 micrometres resulted in reduction of the valve outlet by almost 10 percent. Research limitations/implications: The FEA was limited to the isotropic linear-elastic behaviour of the material albeit can be used to assess leaflet deformation during dynamic load. Practical implications: Leaflets design may be start from efficient FEA which helps estimation of material impact on stress and fold formation which can affect local blood flow. Originality/value: Aortic heart valve leaflet material can be initially tested in dynamic conditions during opening phase with using FEA.
Rocznik
Strony
29--35
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] Z. Nawrat, Z. Małota, Engineer and Medical Physicist, Heart Modeling 2 (2013) 175-177 (in Polish).
  • [2] Z. Nawrat (Ed.), Advances in biomedical technology 2, Zabrze, 2008, (in Polish).
  • [3] A. Szczeklik, P. Gajewski, Interna Szczeklika 2018, MP, Cracow, 2018 (in Polish).
  • [4] T.E. Claiborne, M. Xenos, J. Sheriff, W.C. Chiu, J. Soares, Y. Alemu, S. Gupta, S. Judex, M.J. Slepian, D. Bluestein, Toward Optimization of a Novel Trileaflet Polymeric Prosthetic Heart Valve via Device Thrombogenicity Emulation, ASAIO Journal 59 (2013) 275-283.
  • [5] J. Marciniak, Biomaterials, Silesian University of Technology Publishing House, Gliwice, 2002 (in Polish).
  • [6] M. Nałęcz, S. Błażewicz, L. Stoch, Biomaterials, Academic Publishing House Exit, Warsaw, 2003 (in Polish).
  • [7] J.C. Sun, M.J. Davidson, A. Lamy, J.W. Eikelboom, Antithrombotic management of patients with prosthetic heart valves: current evidence and future trends, The Lancet 374 (2009) 565-576.
  • [8] S. Westaby, R.B. Karp, E.H. Blackstone, S.P. Bishop, Adult human valve dimensions and their surgical significance, The American Journal of Cardiology 53 (1984) 552-556.
  • [9] G.M. Bernacca, B. O'Connor, D.F. Williams, D.J. Wheatley, Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young's modulus and leaflet thickness, Biomaterials 23 (2002) 45-50.
  • [10] M. Gudarzi, H. Zamanian, Mechanical Heart Valves Modeling and Design, LAP LAMBERT Academic Publishing, Saarbrücken, 2013.
  • [11] P.A. Iaizzo, Heart valves from design to clinical implantation, Springer, New York, 2013.
  • [12] E. Rusiński, J. Czmochowski, T. Smolnicki, The advanced method of finite elements in load-bearing structures, Wroclaw University of Technology Publishing House, Wroclaw, 2000.
  • [13] E. Votta, M. Presicce, A. Della Corte, S. Delle-grottaglie, C. Bancone, F. Sturla, A. Redaelli, A novel approach to the quantification of aortic root in vivo structural mechanics: Numerical modelling of aortic root in vivo structural mechanics, International Journal for Numerical Methods in Biomedical Engineering 33 (2017) e2849.
  • [14] K. Banaś, Introduction to MES, Available at: http://www.metal.agh.edu.p1/~banas/wprowadzenie_do_MES.pdf (in Polish).
  • [15] M. Dacko, Finite element method in structural mechanics, Arkady, 1994 (in Polish).
  • [16] G. Rakowski, Z. Kacprzyk, Finite element method in structural mechanics, Warsaw University of Technology Publishing House, Warsaw, 2016.
  • [17] J.N. Reddy, D.K. Gartling, The finite element method in heat transfer and fluid dynamics, CRC Press, Boca Raton, FL, 2010.
  • [18] R.G. Leyh, C. Schmidtke, H.H. Sievers, M.H. Yacoub, Opening and closing characteristics of the aortic valve after different types of valve-preserving surgery, Circulation 100 (1999) 2153-2160.
  • [19] ISO 5840-2:2015.
  • [20] A.N. Smuts, D.C. Blaine, C. Scheffer, H. Weich, A.F. Doubell, K.H. Dellimore, Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve, Journal of the Mechanical Behavior of Biomedical Materials 4 (2011) 85-98.
  • [21] A. Ranga, R. Mongrain, Y. Biadilah, R. Cartier, A Compliant Dynamic FEA Model of the Aortic Valve, Proceedings of the 12th IFToMM World Congress, Besancon, France, 2007.
  • [22] G.M. Bernacca, T.G. Mackay, R. Wilkinson, D.J. Wheatley, Polyurethane heart valves: fatigue failure, calcification, and polyurethane structure, Journal of Biomedical Materials Research 34 (1997) 371-379.
  • [23] M. Kütting, J. Roggenkamp, U. Urban, T. Schmitz-Rode, U. Steinseifer, Polyurethane heart valves: past, present and future, Expert Review of Medical Devices 8 (2011) 227-233.
  • [24] M.R. Loos, J. Yang, D.L. Feke, I. Manas-Zloczower, S. Unal, U. Younes, Enhancement of fatigue life of polyurethane composites containing carbon nanotubes, Composites Part B: Engineering 44 (2013) 740-744.
  • [25] M. Abbasi, M. Barakat, Frame Flexibility Effects on Leaflet Stress Distribution: Comparison of Trans-catheter versus Surgical Aortic Valve Bioprostheses, University of Denver, USA, 2016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-681bacb1-8a17-46a2-b718-96ae0eda5529
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.