
JACSM 2014, Vol. 6, No. 1, pp. 67 -

67

PERSISTENT SEQUENCES WITH EFFECTIVE RANDOM

ACCESS AND SUPPORT FOR INFINITY

Konrad Grzanek

IT Institute, University of Social Sciences, Łódź, Poland
kgrzanek@spoleczna.pl, kongra@gmail.com

Abstract

Persistent sequences are the core data structure in functional programming
style. Their typical implementations usually allow creating infinite streams of
objects. Unfortunately, asking for length of an infinite data structure never ends
or ends with a run-time error. Similarly, there is no default way to make an
effective, O[1] or logarithmic access to an arbitrarily chosen sequence element,
even when the nature of the correlation between index value and the sequence
element is known. This paper presents a Clojure library that meets these
limitations and offers an enhanced version of sequences with a support for
effective random access and the ability to ask for an infinite length.

Key words: functional programming, Clojure, persistent collections, infinity,
random access

1 Prerequisites for Enhanced Sequences

Sequences are by far the most common data structures in functional pro-
gramming languages [3]. The name Lisp (originally LISP) derives from LISt
Processing. In Haskell [5], [6] the list structure is also a basic non-atomic data
type. Sequences possess a set of useful algebraic properties; they are functors
and monadic type constructors [8]. Modern programming languages like Clo-
jure [1], [2] and Haskell support non-strict evaluation This property of these
languages makes creating infinite sequences natural. For instance in Clojure
the expression

(iterate inc 0)

and in Haskell, an equivalent form

80

DOI 10.2478/jacsm-2014-0005

68

Persistent Sequences With Effective ...

iterate (1+) 0

of type

Num a ⇒ [a]

both denote an infinite sequence of natural numbers 0, 1, 2, 3, �. In Clo-
jure the function clojure.core/iterate is defined like

(defn iterate
 [f x] (cons x (lazy-seq (iterate f (f x)))))

and in Haskell

iterate :: (a → a) → a → a
iterate f x = x : iterate f (f x)

Moreover using co-recursion (see e. g. [4])the definitions like the infinite
stream of values (1 in this case)

ones = 1 : ones

or odd numbers

odds = 1 : map (+2) odds

are perfectly possible. In Clojure the lazy evaluation is not a default beha-
vior, but the two co-recursive Haskell streams may be expressed like

(def ones (cons 1 (lazy-seq ones)))

and

(def odds (cons 1 (lazy-seq (map #(+ 2 %) odds))))

There is even a possibility to build a generalization of the emerging pattern
using Clojure macro:

(defmacro lazy-cons
 [x seq]
 `(cons ~x (lazy-seq ~seq)))

69

Grzanek K.

and then one can write the expressions as
(def ones (lazy-cons 1 ones))

(def odds (lazy-cons 1 (map #(+ 2 %) odds)))

This mimics the Haskell expressions closely, the differences are more on
the syntactic than the semantic level with one clear semantic mismatch: the (:)
operator in Haskell is a function of type a → [a] → [a] and the lazy-cons in-
troduced by us in Clojure is a macro that � as such � can't be passed around as
a first-class value. This is still not an issue when defining streams co-
recursively.

Infinite sequences (streams) are first-class citizens in the functional pro-
gramming style under an assumption of non-strict (presumably lazy) evalua-
tion. Although the examples given above make it clear, some questions still
arise about querying these sequences for their length or about accessing their
arbitrarily chosen element.

Let's introduce the symbol � to depict a polymorphic �result� of a never
ending computation and let the symbol ⇒ mean �evaluates to� or �reduces
to�. The following are true

length ones ⇒	�

and

(count odds) ⇒	�

This is almost never a desirable computer program behavior. When we as-
sume the infinity of some streams, it is natural to expect

length ones ⇒	∞

and

(count odds) ⇒	∞

Moreover, even in the face of operating on finite sub-streams, it is imposs-
ible to write

(count (take (** 2 1000) ones))

and get a correct result, because

70

Persistent Sequences With Effective ...

(defn count
 [coll] (clojure.lang.RT/count coll))

and

public static int count(Object o){
if(o instanceof Counted)

 return ((Counted) o).count();
return countFrom(Util.ret1(o, o = null));

 }

The count method returns int values and so it can't give a long or (in this
case) a java.math.BigInteger answer. In Haskell the function length is of type
[a] → Int, so it suffers the same kind of problems.

Another variant of these stream library inconveniences occurs with respect
to a random access. In Clojure the clojue.core/nth procedure requires an int
and in Haskell the operator (!!) has type [a] → Int → a. Moreover, the realiza-
tions of these operators in both languages take the same approach, like in the
Haskell code below:

xs !! n | n < 0 = error �
[] !! _ = error �
(x : _) !! 0 = x
(_ : xs) !! n = xs !! (n-1)

This is why it is impossible to introduce some more effective ways to
access the nth element in the sequence.

We aim here to present a Clojure library enhancement that solves the prob-
lems specified above. A similar, but not identical solution may be proposed
for Haskell. The differences are caused by Haskell's static type checking and
lack of sub-typing1 ([6]).

2 Enhanced Sequences Implementation and Usage

The solution consists of a new sequence type that implements the follow-
ing interface:

1 The Haskell solution requires introducing a specialized algebraic data-type with all interest-

ing list operators, including the effective ones proposed in this paper, defined for it. Although
it may seem disturbing at first, it is rather natural regarding the nature of Haskell type sys-
tem.

71

Grzanek K.

public interface IEnhancedSeq extends
 IPersistentCollection, Sequential,
 Indexed, IHashEq {

 Number len();

 Object enth(Number n);
}

An enhanced sequence's length is represented here by a len operator of
type IEnhancedSeq → java.lang.Number. This opens a way to return length
values greater than Integer.MAX_VALUE. Similarly, the enth operator of type
IEnhancedSeq → java.lang.Number → Object allows using Numbers instead
of int values as indexes when accessing arbitrary sequence elements.

The enhanced sequences type implements Clojure interfaces common for
predefined kinds of sequential types in the language, as presented at the above
IEnhancedSeq interface definition.

The interfaces are implemented by a single abstract class ESeq. This sec-
tion gives a detailed description of the class. The class definition goes as fol-
lows:

public abstract class ESeq implements List, IEnhancedSeq
{
 private final IPersistentCollection origin;
}

There are two constructor methods in the class. The one called withLen al-
lows to bind a length generating procedure to the resulting enhanced se-
quence:

 public static Object withLen(final IFn len,
 Object coll) {
 return new ESeq(origin(coll)) {
 @Override
 public Number len() {
 return (Number) len.invoke();
 }
 };
 }

The other one � withEnth � binds a random accessor:

public static Object withEnth(final IFn enth,
 Object coll) {
 return new ESeq(origin(coll)) {
 @Override

72

Persistent Sequences With Effective ...

 public Object enth(Number n) {
 return enth.invoke(n);
 }
 };
 }

After the enhanced objects are created they may be asked either for their
length:

 @Override
 public Number len() {
 if (origin instanceof IEnhancedSeq) {
 return ((IEnhancedSeq) origin).len();
 }
 return origin.count();
 }

or for their nth element:

 @Override
 public Object enth(Number n) {
 if (origin instanceof IEnhancedSeq) {
 return ((IEnhancedSeq) origin).enth(n);
 }
 return RT.nth(origin, RT.intCast(n));
 }

In the two operators above a wrapped origin collection is used. In fact an
ESeq is just a wrapper around the origin, one may say � a decorator � that of-
fers the additional useful bindings established on the compile time.

The implementation works smoothly with the standard library mechan-
isms, because the original operators simply use the newly introduced en-
hancements, like

 @Override
 public final int count() {
 return RT.intCast(len());
 }

or
 @Override
 public final Object nth(int i) {
 return enth(i);
 }

73

Grzanek K.

and it's variant:

 @Override
 public final Object nth(int i, Object notFound) {
 try {
 return enth(i);
 }
 catch (IndexOutOfBoundsException e) {
 return notFound;
 }
 }

An interesting point to be made here is the implementation of the operator
that checks for the enhanced sequence emptiness. It uses a special Infinity
type2. As it can be seen at the following listing, the Infinity.POSITIVE is an
instance of java.lang.Number and it may be returned by the len operator:

 private static final Long ZERO = 0L;

 @Override
 public final boolean isEmpty() {
 Number n = len();
 if (Infinity.POSITIVE == n) {
 return false;
 }
 return Numbers.equiv(n, ZERO);
 }

This closes up the implementation details of ESeq class. There are many
more mechanisms that have their place in the whole, but because their role is
limited to ensuring the conformance with the standard library and it's con-
tracts, we decided not to present them here.

On Clojure side there is one basic operator which answers whether or not
the passed object (presumably a collection) is an enhanced seq or not:

(defn eseq?
 [coll]
 (instance? kongra.core.eseq.IEnhancedSeq coll))

2 Presenting the details of the Infinity type including the basic infinity-aware arithmetic opera-

tors lay beyond the scope of this paper.

74

Persistent Sequences With Effective ...

2.1 Length and Infinity

The mechanisms described in the previous section are used to build anoth-
er layer of abstraction, the one containing enhanced length-related operators.
The most basic one allows to bind length generating function to the returned
sequence (as mentioned above).

(defn with-len
 [len coll]
 (kongra.core.eseq.ESeq/withLen len coll))

There is also a possibility to pass a length value that gets bound imme-
diately. The expression (return <value>) generates a function that always
returns <value> and can be used as an argument to with-len:

(defn with-len-value
 [value coll]
 (with-len (return value) coll))

A useful macro with-delayed-len allows one to bind a lazily-evaluated
length value:

(defmacro with-delayed-len
 [len-expr coll]
 `(let [d# (delay ~len-expr)]
 (with-len (return @d#) ~coll)))

and the operator with-len-like copies the binding for length from the origin
into the resulting collection:

(defn with-len-like
 [origin coll]
 (with-len-value (len origin) coll))

Finally one can ask the collection for it's enhanced length value using the
following len operator. It is worth noting that for collections of types other
than ESeq simply clojure.core/count is used to establish the value:

(defn len
 [coll]
 (if (eseq? coll)
 (.len ^kongra.core.eseq.IEnhancedSeq coll)
 (count coll)))

75

Grzanek K.

As we stated in the previous section, the len operator may return the Infini-
ty value. As a natural and desired consequence of this fact we may ask the
collection if it is infinite or not. The following procedures simply compare the
returned length value with Infinity constants:

(defn infinite?
 [coll]
 (+∞? (len coll)))

(defn finite?
 [coll]
 (not (infinite? coll)))

Two things should be underlined here:
1. If the collection asked for it is infinite length is not an enhanced one with

len bound, then the count operator is used. This standard library function
simply counts the sequence elements traversing it from the start. So the len
operator is O[n] in the worst case.

2. No standard Clojure collection is an ESeq by default. This is why both
hold: (infinite? (iterate inc 0)) ⇒ � and (infinite? odds) ⇒ �

It is programmer's responsibility to mark a sequence as an infinite one.
Fortunately, whe following simple procedure does the job.

(defn infinite
 [coll]
 (with-len-value +∞ coll))

Now with the following definitions

(def ones (infinite (lazy-cons 1 ones)))

(def odds (infinite (lazy-cons 1 (map #(+ 2 %) odds))))

we have (infinite? ones) ⇒	true, (infinite? odds) ⇒	true and also
(len ones) ⇒	∞, (len odds) ⇒	∞.

2.2 Random Access with Optimistic Performance Profile

Similarly, there are two operators, one that allows binding the effective
random accessor procedure to the returned collection:

(defn with-enth

76

Persistent Sequences With Effective ...

 [nth coll]
 (kongra.core.eseq.ESeq/withEnth nth coll))

and another that actually makes the access using the bound accessor, if
present. In the face of absence of such an accessor binding, the standard clo-
jure.core/nth is used:

(defn enth
 [coll n]
 (if (eseq? coll)
 (.enth ^kongra.core.eseq.IEnhancedSeq coll n)

 (nth coll n)))

3 Examples

To get a stronger grasp on what these enhancements may be useful for,
please, take a look at the following procedure that concatenates collections
and is aware of the possible infinity of some of the arguments:

(defn cat-eseq
 "Returns an enhaced collection being the result of concatenating the
 passed colls. It is assumed the number of colls is finite."
 [& colls]
 (let [;; prepare colls and lens (delayed)
 len-colls-bundle
 (delay
 (let [lens (map len colls)
 ;; take only the colls up to the first with
 ;; len=+∞ (inclusively)
 ∞-idx (find-idx' +∞? lens)
 colls (if ∞-idx (take (inc' ∞-idx) colls) colls)
 lens (if ∞-idx (take (inc' ∞-idx) lens) lens)]
 (pair lens colls)))

 lens #(pair-first @len-colls-bundle)
 colls #(pair-second @len-colls-bundle)

 ;; prepare enth (with delayed realization)
 intervs-intermap-bundle
 (delay
 (let [intervs (->> (lens)
 (cons 0)
 (apply cummulative-intervs')
 vec) ;; essential wrt performance
 intermap (zipmap intervs (colls))]
 (pair intervs intermap)))

 intervs #(pair-first @intervs-intermap-bundle)
 intermap #(pair-second @intervs-intermap-bundle)

 enth-impl

77

Grzanek K.

 (fn [n]
 ;; 1. select proper interval
 (let [intv (binary-search (intervs) n
 #(interv-compare (lv "[,)") %2 %1))]
 (when-not intv (terror IndexOutOfBoundsException n))

 (let [;; 2. select collection
 coll ((intermap) intv)
 ;; 3. calculate the index in the collection
 i (- n (:start intv))]
 ;; 4. get the result wrapped with the transformation
 (enth coll i))))]

 (->> (apply concat (colls))
 (with-enth enth-impl)
 (with-delayed-len (reduce ∞+' (lens))))))

A slightly less complicated is the sequence of natural numbers. The first
variant is not an enhanced one:

(defn N'
 "Returns an infinite N (natural numbers) set := 0, 1, 2, ...
 Optionally allows to specify the start (first) number. Unlimited
 integral range."
 ([] (N' 0))
 ([start] (iterate inc' start)))

and now the enhanced version:

(defn N'-eseq
 ([] (N'-eseq 0))

 ([start]
 (->> (N' start)
 infinite
 (with-enth #(do
 (when (< % 0) (terror
 IndexOutOfBoundsException %))
 (+' start %))))))

Similarly, the infinite sequence of factorial numbers, non-enhanced in the
first place:

(defn factorials'
 "Returns an infinite stream 0!, 1!, 2!, 3!, ..."
 []
 (iterate-with *' 1 (N' 1)))

and it's enhanced version:

(defn factorials'-eseq
 "An eseq version of factorials'"
 []
 (->> (factorials')
 (with-enth #(factorial' %))
 infinite))

78

Persistent Sequences With Effective ...

The power-set (set of all subsets) implementation takes a slightly more
composite approach. First, the generator:

(defn- powerset-generator
 [indexed-coll n]
 (->> indexed-coll
 (take (ebit-length n))
 (filter (fn [p] (ebit-test n (pair-first p))))
 (map pair-second)))

then, the accessor

(defn nth-in-powerset
 "Returns an n-th element of a powerset of a collection. Works for
 n : T <: Long and for (possibly) infinite collections. That's why
 for the finite colls there are no range checks for n."
 [coll n]
 (powerset-generator (indexed' coll) n))

And the actual power-set sequence:

(defn powerset
 "Returns a powerset for a possibly infinite coll."
 [coll]
 (let [indexed-coll (indexed' coll)]
 (->> (N' 1)
 (map #(powerset-generator indexed-coll %))
 (take-while seq)
 (cons '()))))

The enhanced power-set sequence takes an additional element transforma-
tion function, called enthtrans, to (optionally) modify any value either when
accessing it during a standard iteration (e.g. left or right catamorphism � see
[7]) or by an accessor:

(defn powerset-eseq
 "Returns an enhanced version of the powerset. Every element of the
 returned collection is subjected to a transformation using enthtrans
 (identity by default)."
 ([enthtrans coll]
 (let [n (len coll)
 result (->> coll
 powerset
 (map enthtrans)
 (with-enth #(enthtrans (
 nth-in-powerset coll %))))]
 (if (+∞? n)
 (infinite result)
 (with-delayed-len (** 2 n) result))))
 ([coll]
 (powerset-eseq clojure.core/identity ;; enthtrans
 coll)))

79

Grzanek K.

The final case-study is an enhanced permutations generation routine. The
accessor returns n-th permutation of a collection of elements using Lehmer
code for n [9]:

(defn nth-permutation
 "Returns n-th permutation (lexicographical) of the given coll."
 [coll n]
 (let [v (if (vector? coll) coll (vec coll))
 lehmer-code (factoradic n)

 ;; lehmer-code must be supplemented with 0-s to match the
 ;; length of v
 zeros-count (- (count v) (count lehmer-code))
 lehmer-code (concat (repeat zeros-count 0) lehmer-code)

 gen (fn [[_ v] i] (pair (nth v i) (vec-remove i v)))]

 (->> (iterate-with gen (pair nil v) lehmer-code)
 next
 (map pair-first))))

The original lexicographical permutations are returned by clo-
jure.math.combinatorics/permutations routine. This is wrapped within the
following enhanced form:

(defn permutations-eseq
 "Returns an enhanced version of permutations. Every element of the
 returned collection is subjected to a transformation using enthtrans
 (identity by default)."
 ([enthtrans coll]
 (->> coll
 permutations
 (map enthtrans)
 (with-delayed-len (factorial' (len coll)))
 (with-enth #(enthtrans (nth-permutation coll %)))))

 ([coll] (permutations-eseq clojure.core/identity ;; enthtrans
 coll)))

Here we also have an optional element transformation (enthtrans), like in
the case of the power-set.

4 Conclusions

We presented a set of convenient extensions for the sequence abstraction
in Clojure. The attached case studies show the relative ease of using these me-
chanisms. In general, the enhanced sequences fit pretty well in the ecosystem
Clojure standard library. However, it would be an instructive experience to
implement them in statically typed languages like Haskell. The Clojure solu-
tion is based on sub-typing, which is typical for a language that compiles
down to Java byte-code and runs on top of the JVM. In Haskell there is no
sub-typing, so the expected implementation technique presumably should
consist of:

80

Persistent Sequences With Effective ...

 using the algebraic data types
 using type-classes
 and finally � the resulting enhancement abstraction should make it's usage

explicit rather than implicit as in the case of Clojure.
As a reward, one would get a statically typed, provably correct solution. It

is now a question of undertaking future efforts to make this happen.

References

1. Halloway S., 2009, Programming Clojure, ISBN: 978-1-93435-633-3, The
Pragmatic Bookshelf

2. Emerick Ch., Carper B., Grand Ch., 2012, Clojure Programming, O'Reilly Me-
dia Inc., ISBN: 978-1-449-39470-7

3. Bird R., Wadler P., Introduction to Functional Programming, 1988, Prentice
Hall International (UK) Ltd

4. Doets K., van Eijck J., The Haskell Road to Logic, Math and Programming,
2004, College Publications, ISBN-10: 0954300696, ISBN-13: 978-0954300692

5. Lipovaca M., Learn You a Haskell for Great Good, 2011, ISBN: 978-1-59327-
283-8

6. Haskell Wikibook, 2014, http://en.wikibooks.org/wiki/Haskell
7. Meijer E., Fokkinga M.M., Functional Programming with Bananas, Lenses,

Envelopes and Barbed Wire, 1991, Springer Verlag
8. Awodey S., Category Theory, Second Edition, 2010, Oxford University Press
9. Lehmer D.H., Teaching combinatorial tricks to a computer, 1960, Proc. Sym-

pos. Appl. Math. Combinatorial Analysis, Amer. Math. Soc. 10: pp. 179�193

