PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Monitoring of secondary forest succession on abandoned farmland using LiDAR point clouds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the study was an assessment of LiDAR point clouds for automating the mapping of land use and land cover changes, mainly land abandonment and the process of secondary forest succession. Detailed information about land cover was determined based on airborne laser scanning data. The presented study focuses on the analysis of the spatial range and structure of vegetation. The study area was located in Milicz district in the voivodeship of Lower Silesia – the central west part of Poland. The areas of interest were parcels where agricultural land had been abandoned and forest succession processes had progressed. Analysis of the spatial range of the secondary forest succession was carried out using a reclassified nDSM. Reclassification of the nDSM was done using > 1 m, > 2 m and > 3 m for the pixel values, representing the height of vegetation above the ground. Parameters such as height of vegetation, standard deviation of height and cover density were calculated, to show the process of the increase in forest succession on abandoned agricultural land. The results confirmed a discrepancy between the cadastral data and the actual use of the plots. In the study area, more than three times as much forested and wooded area was detected than had been recorded in official databases. Analyses based on airborne laser scanning point clouds indicated significant diversity in the vertical and horizontal structure of vegetation. The results demonstrated gradual succession of greenery in the research area.
Rocznik
Strony
305--319
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • University of Agriculture in Krakow Faculty of Forestry, Institute of Forest Resources Management Department of Forest Management, Geomatics and Forest Economics 46 Av 29 Listopada, 31-425 Krakow, Poland
autor
  • University of Agriculture in Krakow Faculty of Forestry, Institute of Forest Resources Management Department of Forest Management, Geomatics and Forest Economics 46 Av 29 Listopada, 31-425 Krakow, Poland
autor
  • University of Agriculture in Krakow Faculty of Forestry, Institute of Forest Resources Management Department of Forest Management, Geomatics and Forest Economics 46 Av 29 Listopada, 31-425 Krakow, Poland
Bibliografia
  • [1] Alberti G., Boscutti F., Pirotti F., Bertacco C., De Simon G., Sigura M., Cazorzi F., and Bonfanti P. (2013). A LiDAR-based approach for a multi-purpose characterization of Alpine forests: an Italia case study. iForest, 6, 156–168. DOI: 10.3832/ifor0876-006.
  • [2] Andersen H.E., Reutebuch, S.E., and McGaughey, R.J., (2006). A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Canadian Journal of Remote Sensing, 32, 355–366.
  • [3] Bergen, K.M., and Dronova, I. (2007). Observing succession on aspen-dominated landscapes using a remote sensing-ecosystem approach. Landscape Ecology, 22, 1395–1410.
  • [4] Błajda S. (2015). Monitoring of changes in EGiB database concerning forest succession process based on orthophotomaps and airborne laser scanning data for the area in Milicz district. Diploma thesis. University of Agriculture.
  • [5] Bowen, M.E., Mcalpine, C.A., House, A.P.N., and Smith, G.C. (2007). Regrowth forests on abandonem agricultural land: A review of their habitat values for recovering forest fauna. Biological Conservation, 140(3–4), 273–296.
  • [6] European Commission. (2018). Modernising the CAP: satellite data authorised to replace on-farm checks. NEWS, 25 May 2018, Brussels (https://ec.europa.eu/info/news).
  • [7] van Ewijk, K.Y., Treitz, P.M., and Scott, N.A. (2011). https://ec.europa.eu/info/news Characterizing forest succession in central Ontario using lidar-derived indices. Photogrammetric Engineering and Remote Sensing, 77(3), 261–269.
  • [8] Falkowski, M.J., Evans, J.S., Martinuzzi, S., Gessler, P.E., and Hudak, A.T. (2009). Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA. Remote Sensing of Environment, 113(5), 946–956.
  • [9] Hyyppä J., Hyyppä H., Litkey P., Yu X., Haggrén H., Rönnholm P., Pyysalo U., Pitkanen J. and Maltamo M. (2004). Algorithms and methods of airborne laser-scanning for forest measurements. Thies M., Koch B., Spiecker H. and Weinacker H. (eds.): Laser-Scanners for Forest and Landscape Assessment: Proceedings of the ISPRS Working Group VIII/2. Freiburg, Germany. International Archives of Photogrammetry, Remote Sensing, and the Spatial Information Sciences, XXXVI–8/W2.
  • [10] Jagodziński, A., Dyderski, M., Gęsikiewicz, K., and Horodecki, P. (2018). Tree- and Stand-Level Biomass Estimation in a Larix decidua Mill. Chronosequence. Forests, 2018, 9, 587.
  • [11] Kolecka, N. (2018). Height of Successional Vegetation Indicates Moment of Agricultural Land Abandonment. Remote Sensing, 2018, 10(10), 1568.
  • [12] Kolecka, N., Kozak, J., Kaim, D., Dobosz, M., Ginzler, C., and Psomas, A. (2015). Mapping secondary forest succession on abandoned agricultural land with LiDAR point clouds and terrestrial photography, Remote Sensing, 7(7), 8300–8322.
  • [13] Kolecka, N., Kozak, J., Kaim, D., Dobosz, M., Ginzler, Ch., and Psomas, A. (2016). Mapping secondary forest succession on abandoned agricultural land in the Polish Carpathians. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, 41, 931–935.
  • [14] Lasanta, T., Arnáez, J, Pascual, N., Ruiz-Flaño, P, Errea, M.P, and Lana-Renault, N., (2017). Space–time process and drivers of land abandonment in Europe. Catena, 149, 810–823.
  • [15] http://dx.doi.org/10.1016/j.catena.2016.02.024.
  • [16] Lieskovský, J. Bezák, P., Špulerová, J., Lieskovský, T., Koleda, P., Dobrovodská, M., Bürgi, M., and Gimmi, U. (2015). The abandonment of traditional agricultural landscape in Slovakia – Analysis of extent and driving forces. Journal of Rural Studies, 37, 75–84.
  • [17] Maier, B., Tiede, D., and Dorren, L. (2008). Characterising mountain forest structure using landscape metrics on LIDAR-based canopy surface models. Lecture Notes in Geoinformation and Cartography, Object-Based Image Analysis, 625–643. 10.1007/978-3-540-77058-9_34.
  • [18] Maltamo M., Mustonen K., Hyyppa J., Pitkanen J. and Yu X. (2004). The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve. Canadian Journal of Forest Research, 34(9), 1791–1801.
  • [19] McGaughey R.J. (2012). Fusion/ldv: Software for lidar data analysis and visualization. Software manual. USDA Forest Service. Pacific Northwest Research Station.
  • [20] McGaughey R. J., Carson W., Reutebuch S. and Andersen H.E. (2004). Direct measurement of individual tree characteristics from lidar data. Proceedings of the Annual ASPRS Conference. Denver. American Society of Photogrammetry and Remote Sensing.
  • [21] Navarro, L. and Pereira, H. (2012). Rewilding abandoned landscapes in Europe. Ecosystems, 15, 900–912.
  • [22] Naesset E., and Økland T. (2002). Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sensing of Environment, 79, 105–115.
  • [23] Naesset E. (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80, 80–99.
  • [24] Prishchepov, A. V., Volker, C. R., Dubinin, M., and Alcantara, C. (2012). The Effect of Landsat ETM/ETM + Image Acquisition Dates on the Detection of Agricultural Land Abandonment in Eastern Europe. Remote Sensing of Environment, 126, 195–209.
  • [25] Singh, K., Vogler, J., Shoemaker, D., and Meentemeyer, R. (2012), LiDAR-Landsat data fusion for largearea assessment of urban land cover: Balancing spatial resolution, data volume, and mapping accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 74, 110–121.
  • [26] Socha, J., Pierzchalski, M, Bałazy, R., and Ciesielski, M. (2017). Modelling top height growth and site index using repeated laser scanning data. Forest Ecology and Management, 406, 307–317.
  • [27] Stereńczak, K., Mielcarek, M., Wertz, B., Bronisz, K., Zajączkowski, G., Jagodziński, A.M, Ochał, W., and Skorupski, M. (2018). Factors influencing the accuracy of ground-based tree-height measurements for major European tree species. Journal of Environmental Management (in press).
  • [28] Szostak M., Hawryło P., and Piela D. (2018). Using of Sentinel-2 images for automation of the forest succession detection. European Journal of Remote Sensing, 51, 1, 142–149.
  • [29] Szostak M., Wężyk P., Király G., Hawryło P., and Bednarski A. (2018). Automation of forest succession dynamics using airborne laser scanning data. 18th International Multidisciplinary Scientific Geo-Conference SGEM 2018, www.sgem.org, SGEM2018 Conference Proceedings, 18, 2.3, 41–48.
  • [30] Szostak M.,Wężyk P., and Tompalski P. (2014). Aerial Orthophoto and Airborne Laser Scanning as Monitoring Tools for Land Cover Dynamics: A Case Study from the Milicz Forest District (Poland). Pure and Applied Geophysics, 171(6), 857–866. DOI: 10.1007/s00024-013-0668-8.
  • [31] Susyan, E.A, Wirth S., Ananyeva, N.D, and Stolnikova, E.V. (2011). Forest succession on abandonem arable soils in European Russia – Impacts on microbial biomass, fungal-bacterial ratio, and basal CO2 respiration activity. European Journal of Soil Biology, 47(3), 169–174.
  • [32] Tompalski P. (2012). The use of 3D spatial indices for urban vegetation analysis based on airborne laser scanning data. Archives of Photogrammetry, Cartography and Remote Sensing, 23, 443–456.
  • [33] Śmigielski M., Pijanowski J., and Gniadek J. (2017). Forest succession and afforestation of agricultural land as a current challenge agricultural works. Acta Sci. Pol. Formatio Circumiectus, 16(4), 51–63.
  • [34] Wężyk, P., Szostak, M., and Tompalski, P. (2009). Comparison of the accuracy of the “PHOTO” check method with automatic analysis based on ALS data for direct control of subsidy payments. Archives of Photogrammetry, Cartography and Remote Sensing, 20, 445–456.
  • [35] Wężyk P., and de Kok R. (2005). Automatic mapping of the dynamics of forest succession on abandoned parcels in south Poland. [In:] Strobl et al. (Eds.). Angewandte Geoinformatik, 2005. Herbert Wichman Verlag. Heidelberg, pp. 774–779. ISBN 3-87907-244-4.
  • [36] Wężyk P., Tompalski P., Szostak M., Glista M., and Pierzchalski M. (2008). Describing the selected canopy layer parameters of the Scots pine stands using ALS data. 8th international conference on LiDAR applications in forest assessment and inventory. SiliviLaser 2008, Edinburgh, pp. 636–645.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6819a18e-25e3-4a76-81a0-99d44bae9e31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.