PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electromechanical System for Charging Batteries of Electric Cars

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An electric vehicle battery charger based on the Faraday disk generator is developed in this paper to reduce the amount of time it takes for the rotational energy to be converted into electrical energy. The kinetic energy of the generator during charging is transformed effectively into electric energy by rotating the compact formed from the disk permanent magnet and conducting shield by means of an electric motor supplied from the power grid using possibly renewable energy sources. One of the advantages of the Faraday disk generator is its high power capability, which is applicable for high rate of charging and reducing the amount of time it takes for the rotational energy to be converted into electrical energy. Computer simulations have been performed for various sets of the charger element parameters and after selecting the obtained results, the optimal set was established. Simulation results for charging processes corresponding to the optimal element parameter tests are included.
Rocznik
Strony
165--179
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • University of Ecology and Management
Bibliografia
  • [1] Boldea, I. (2017). Electric generators and motors: An overview. CES Transactions on Electrical Machines and Systems, 1(1):3–14.
  • [2] Bolonkin, A. (2007). New concepts, ideas and innovation in aerospace. AB Levitrons and their applications to Earth’s motionless satellites, pages 205–220.
  • [3] Chyba, C. F., Hand, K. P., and Thomas, P. J. (2015). Energy conservation and poynting’s theorem in the homopolar generator. American Journal of Physics, 83(1):72– 75.
  • [4] Eberhard, M. and Tarpenning, M. (2006). The 21 st century electric car tesla motors. Tesla Motors.
  • [5] Engel, T. and Kontras, E. (2014). Analysis and design of homopolar motors and generators. In Electromagnetic Launch Technology (EML), 2014 17th International Symposium on, pages 1–6. IEEE.
  • [6] Feng, F., Lu, R.,Wei, G., and Zhu, C. (2015). Online estimation of model parameters and state of charge of lifepo4 batteries using a novel open-circuit voltage at various ambient temperatures. Energies, 8(4):2950–2976.
  • [7] Gilbert, A. D. (2003). Dynamo theory. In Handbook of mathematical fluid dynamics, volume 2, pages 355–441. Elsevier.
  • [8] Hide, R., Skeldon, A. C., and Acheson, D. J. (1996). A study of two novel selfexciting single-disk homopolar dynamos: theory. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452(1949):1369–1395.
  • [9] Ivana, P., Vlcek, I., and Ivanova, M. (2016). The construction of the pure homopolar generator reveals physical problem of maxwell’s equations. arXiv preprint arXiv:1601.07750.
  • [10] Kirschner, J. and Moon, S. (2010). An investigation of the homopolar generator. Electromagnetism: A Modelling and Simulation Approach. Project 2: Final Paper.
  • [11] Mazurkiewicz, A. (2007). Nanosciences and nanotechnologies. present state and development perspectives. Institute of Exploitation Technology - State Research Institute.
  • [12] Moroz, I. M. (2001). Self-exciting faraday disk homopolar dynamos. International Journal of Bifurcation and Chaos, 11(12):2961–2975.
  • [13] Nezhad, M. B. (2013). Study of Homopolar DC Generator. PhD thesis, The University of Manchester (United Kingdom).
  • [14] Perek, A. and Kurnik, W. (2015). Kinematically excited vibration of an asymmetric rotor/bearing system with magnetic lubricant. Machine Dynamics Research, 39(4).
  • [15] Struchtrup, H. (2014). Thermodynamics and energy conversion. Springer.
  • [16] Trzaska, Z. (2010). Mixed mode and chaotic oscillations in a system with a selfexcited disk generator. Proceedings of the Conference "Modeling and Simulation" MiS-6, Kościelisko.
  • [17] Trzaska, Z. (2013). Dynamiczne procesy w napędzie samochodu elektrycznego w ruchu miejskim. Transport Miejski i Regionalny, (11):26–31.
  • [18] Trzaska, Z. (2015). Impact and chaotic phenomena in nonlinear nonsmooth electrical dynamical systems. Przegląd Elektrotechniczny, 91(4):77–85.
  • [19] Zhang, L., Peng, H., Ning, Z., Mu, Z., and Sun, C. (2017). Comparative research on rc equivalent circuit models for lithium-ion batteries of electric vehicles. Applied Sciences, 7(10):1002.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68163f83-d413-4036-8beb-100fd177f725
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.