Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this research was to process a mixture of paper waste and garden waste based on material flow analysis and to analyze its parameters based on water content, ash content, heating value, along with Thermogravimetry Analysis (TGA)/Derivative Thermogravimetry (DTG). The garden waste treatment process consists of shredding, drying with a rotary dryer, separator, and then shaving with a hammer mill. Paper waste only needs a shredder process. Then, the mixing process and pelletizing of paper waste as well as garden waste are carried out according to the variation (w/w) 100% paper (K100), 75% paper (K75), 50% paper (K50), 25% paper (K25), and 100% garden waste (K0). The water content ranged from 5.8 to 15.25%. From K0 to K100 samples, the ash content increased from 4.54 to 9.85%. A correlation of 0.9047 was found from samples K0 to K100. There was a correlation between increasing calorific value along with the mixture with paper waste. The caloric value in K0 to K100 increased from 13.11 to 19.03 MJ/kg. The TGA/DTG analysis reduced mass due to water evaporation, devolatilization, and carbonization processes.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
64--74
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
autor
- Civil Engineering Study Program, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta, 57126, Indonesia
autor
- Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
autor
- Department of Environmental Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, 50275, Indonesia
autor
- Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
- Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
autor
- Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
autor
- Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
autor
- Engineering Management, Industrial and Agroindusty Technology Faculty, Universitas Internasional Semen Indonesia, Kompleks PT. Semen Indonesia (Persero) Tbk, Jl. Veteran, Kb. Dalem, Sidomoro, Kebomas, Gresik, 61122, East Java, Indonesia
autor
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak Darul Ridzuan, Malaysia
Bibliografia
- 1. Widyarsana I.M.W., Zafira A.D. 2015. Study On The Development Of Solid Waste Management In Tangerang. Jurnal Teknik Lingkungan, 21, 87.
- 2. Hasibuan H.S., Soemardi T.P., Koestoer R., Moersidik S. 2014. The Role of Transit Oriented Development in Constructing Urban Environment Sustainability, the Case of Jabodetabek, Indonesia. Procedia Environmental Sciences, 20, 622.
- 3. Debataraja I.B., Pradana D.H., Winarni N.L. The impact of landuse and the relationship between NDVI on the bird species richness in Sukmajaya District, Depok. IOP Conference Series: Earth and Environmental Science, 846(1). (2021)
- 4. Latianingsih N., Susyanti D.W., Mariam I. 2019. Model Kebijakan Pengelolaan Sampah Daerah Dalam Mewujudkan Masyarakat Sejahtera. Epigram, 16(1), 145.
- 5. Annisa B. 2019. Asesmen Aliran Kritis Sistem Pengelolaan Sampah Perkotaan di TPA Sampah. SPECTA Journal of Technology, 1(2), 41.
- 6. Ismiyati, Purnawan I., Kadarisman M. 2016. Effectiveness of environmental management based on trash in the city of Depok. MATEC Web of Conferences, 58.
- 7. Sagala G., Kristanto G.A., Kusuma M.A., Rizki S. 2018. Assessment of municipal solid waste as refuse derived fuel in the cement industry. International Journal on Advanced Science, Engineering and Information Technology, 8(4), 1062.
- 8. Sharon C., Sharon M. 2013. Studies on biodegradation of polyethylene terephthalate: A synthetic polymer. Journal of Microbiology and Biotechnology Research, 2(2), 248. Retrieved from https://jmbronline.com/index.php/JMBR/article/view/106
- 9. Sarwono A., Septiariva I.Y., Qonitan F.D., Zahra N.L., Sari N.K., Fauziah E.N., Suryawan I. W.K. 2021. Municipal Solid Waste Treatment for Energy Recovery Through Thermal Waste-To-Energy in Depok City, Indonesia. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 85.
- 10. Saputro H., Liana D.N., Firdaus A., Mahmudin M., Evan B., Karsa B.S., Fitriana L. 2018. Preliminary study of pellets Refuse Derived Fuel (RDF-5) based on Durian waste for feedstock in fast pyrolysis. IOP Conference Series: Materials Science and Engineering, 434(1).
- 11. Novita D.M., Damanhuri E. 2009. Perhitungan Nilai Kalor Berdasarkan Komposisi dan Karakteristik Sampah Perkotaan di Indonesia dalam Konsep Waste To Energy. Jurnal Teknik Lingkungan, 16(2), 103.
- 12. Rezaei H., Yazdan Panah F., Lim C.J. 2020. Sokhansanj S. Pelletization of Refuse-Derived Fuel with Varying Compositions of Plastic, Paper, Organic and Wood. Sustainability.
- 13. Białowiec A., Pulka J., Stępień P., Manczarski P., Gołaszewski J. 2017. The RDF/SRF torrefaction: An effect of temperature on characterization of the product – Carbonized Refuse Derived Fuel. Waste Management, 70, 91.
- 14. Zhou H., Meng A., Long Y., Li Q., Zhang Y. 2014. An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renewable and Sustainable Energy Reviews, 36, 107.
- 15. Ariefin, Sariyusda, Jannifar, Mawardi I., Franky. 2018. Efektifitas Modifikasi Lubang Cetakan terhadap Karakteristik Wood Pellet. Proceeding Seminar Nasional Politeknik Negeri Lhokseumawe, 2(1), 66.
- 16. Zulfian F.D., Setyawati D., Nurhaida R.E. 2015. Kualitas biopelet dari limbah batang kelapa sawit pada berbagai ukuran serbuk dan jenis perekat. Jurnal hutan lestari, 3(2), 208.
- 17. Damayanti R., Lusiana N., Prasetyo J. 2017. Studi Pengaruh Ukuran Partikel dan Penambahan Perekat Tapioka terhadap Karakteristik Biopelet dari Kulit Coklat (Theobroma Cacao L.) Sebagai Bahan Bakar Alternatif Terbarukan. Jurnal Teknotan, 11(1).
- 18. Widjaya E.R., Triwahyudi S., Hadiwibowo S., Boulevard J.S. 2019. Performance Test of Biomass Pellet Plant Machinery using Rice Husk as Raw Material. Jurnal Enjiniring Pertanian, 11(2), 39.
- 19. Junaidi, Ariefin, Mawardi I. 2017. Pengaruh Persentase Perekat Terhadap Karakteristik Pellet Kayu Dari Kayu Sisa Gergajian. Jurnal Mesin Sains Terapan, 1(1), 13.
- 20. Hendrawan I., Haifan M., Mesin T., Teknik P., Otomotif M. 2020. Pengelolaan sampah menjadi energi berbasis tempat olah sampah setempat (toss) di kota tangerang selatan. Abdi Laksana: Jurnal Pengabdian Kepada Masyarakat, 1, 1.
- 21. Abdollahi M.R., Ravindran V., Svihus B. 2013. Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Animal Feed Science and Technology, 179(1–4), 1.
- 22. Gendebien A. 2003. Refuse derived fuel, current practice and perspectives. WRc Ref: CO5087-4.
- 23. Paskawati Y.A., Susyana, Antaresti, Retnoningtyas E.S. 2011. Pemanfaatan sabut kelapa sebagai bahan baku pembuatan kertas komposit alternatif. Jurnal Widya Teknik, 9, 12.
- 24. Tchobanoglous G., Vigil S.A. 1993. Integrated solid waste managementengineering principles and management. New York: McGraw-Hill.
- 25. Basri E., Wahyudi I. 2013. Sifat Dasar Kayu Jati Plus Perhutani Dari Berbagai Umur Dan Kaitannya Dengan Sifat Dan Kualitas Pengeringan. Jurnal Penelitian Hasil Hutan, 31(2), 93.
- 26. Suryawan I.W.K., Fauziah E.N., Septiariva I.Y., Ramadan S., Sari M.M., Ummatin K.K., Lim J. 2022. Pelletizing of Various Municipal Solid Waste : Effect of Hardness and Density into Caloric Value. Ecological Engineering & Environmental Technology (EEET), 23(2), 122.
- 27. Sukarta I.N., Ayuni S. 2016. Analisis Proksimat dan Nilai Kalor pada Pelet Limbah Bambu. Sains dan Teknologi, 5(1), 752.
- 28. Gifani M., Qadry A., Saputro D.D., Widodo R.D. 2019. Karekteristik Dan Uji Pembakaran Biopelet Campuran Cangkang Kelapa Sawit Dan Serbuk Kayu Sebagai Bahan Bakar Alternatif Terbarukan. Karekteristik Dan Uji Pembakaran Biopelet Campuran Cangkang Kelapa Sawit Dan Serbuk Kayu Sebagai Bahan Bakar Alternatif Terbarukan, 16(2), 177.
- 29. Hasna A.H., Sutapa J.P.G., Irawati D. 2019. Pengaruh Ukuran Serbuk dan Penambahan Tempurung Kelapa Terhadap Kualitas Pelet Kayu Sengon. Jurnal Ilmu Kehutanan, 13(2), 170.
- 30. Ristianingsih Y., Ulfa A., Syafitri K.S.R. 2015. Pengaruh Suhu Dan Konsentrasi Perekat Terhadap Karakteristik Briket Bioarang Berbahan Baku Tandan Kosong Kelapa Sawit Dengan Proses Pirolisis. Konversi, 4(2), 16.
- 31. Mustamu S., Hermawan D., Pari G. 2018. Karakteristik biopelet Dari limbah padat kayu putih dan gondorukem. Jurnal Penelitian Hasil Hutan, 36(3), 191.
- 32. Pasek A.D., Gultom K.W., Suwono A. 2013. Feasibility of recovering energy from municipal solid waste to generate electricity. Journal of Engineering and Technological Sciences, 45(3), 241.
- 33. Putri A.P., Sukandar S. 2013. Studi Pemanfaatan Limbah B3 Sludge Produced Water Sebagai Bahan Baku Refuse Derived Fuel (RDF). Jurnal Teknik Lingkungan, 19(1 SE), 1.
- 34. Santosa S., Soemarno S. 2016. Peningkatan Nilai Kalor Produk Pada Produk Proses Bio-drying Sampah Organik. Indonesian Green Technology Journal, 3(1), 29.
- 35. Amirta R., Anwar T., Sudrajat Yuliansyah, Suwinarti W. 2018. Trial production of fuel pellet from Acacia mangium bark waste biomass. IOP Conference Series: Earth and Environmental Science, 144(1).
- 36. Purwanto W.W., Supramono D., Fisafarani H. 2010. Biomass Waste and Biomass Pellets Characteristics and Their Potential in Indonesia. Chemical Engineering, (November), 1.
- 37. Mardiah A. 2019. Pembuatan dan Pengujian Karakteristik Briket dari Sampah Daun dan Kertas di PT. Indonesia Power UP Suralaya Banten. Bogor: IPB University.
- 38. Wiyoto Y.W.P., Budiana E.P., Himawanto D.A. 2018. Analisa thermogravimetry pada pirolisis limbah pertanian. Jurnal Teknik Mesin Indonesia, 11(1), 25.
- 39. Mayasari H.E., Yuniari A. 2016. Effect of vulcanization system and carbon black on mechanical and swelling properties of EPDM blends. Majalah Kulit, Karet, dan Plastik, 32(1), 59.
- 40. Boumanchar I., Chhiti Y., M’hamdi Alaoui F.E., El Ouinani A., Sahibed-Dine A., Bentiss F., Bensitel M. 2017. Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste. Waste Management, 61, 78.
- 41. Brand M.A., de Barnasky R.R.S., Carvalho C.A., Buss R., Waltrick D.B., Jacinto R.C. 2018. Thermogravimetric analysis for characterization of the pellets produced with different forest and agricultural residues. Ciencia Rural, 48(11).
- 42. Lukmandaru G., Susanti D., Widyorini R. 2018. Chemical properties of modified mahogany wood by heat treatment. Jurnal Penelitian Kehutanan Wallacea, 7(1), 37.
- 43. Alfredsen G., Bader T.K., Dibdiakova J., Filbakk T., Bollmus S., Hofstetter K. 2012. Thermogravimetric analysis for wood decay characterisation. European Journal of Wood and Wood Products, 70(4), 527.
- 44. Burhenne L., Messmer J., Aicher T., Laborie M.P. 2013. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 177.
- 45. Kumar R., Sharma V., Verma N., Diwan P.K., Kumar V., Kumar V. 2019. Analysis of writing/printing paper via Thermogravimetric Analysis: application in forensic science. Australian Journal of Forensic Sciences, 51(1), 22.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68112d3d-133f-41c2-adac-3e90d5bc415a