PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement of sprinkled and encapsulated space charge in homo-multilayer dielectric samples using PEA method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High voltage DC insulation plays an important role, especially in power transmission systems (HVDC) but also increasingly on medium voltage levels (MVDC). The space charge behavior under DC voltage has great importance on electrical insulation reliability. This paper reports investigations of encapsulated space charge in homo-multilayer dielectric materials using the pulsed electro-acoustic (PEA) method. The charge has been introduced on the homo-layer interface by corona sprinkling prior to encapsulation. Two doses of charge density were accumulated on the dielectric surface in two types of dielectric materials Kapton and LDPE. The polarization DC voltage was applied in 2 min intervals in steps corresponding to an effective electric field strength in a range of 8–40 kV/mm for Kapton and 10–50 kV/mm for LDPE. The PEA-based detected space charge was compared at the initial, reference stage, prior to charge accumulation, and after corona sprinkling of defined charge density. The evaluation was based on the PEA time-dependent charge distributions and charge profiles referring to the DC polarization field strength. The goal of the experiment was to identify the relationship and the character of the known sprinkled and encapsulated charge inside homo-layered materials using the PEA method. According to the observations, the ratio between sprinkled charge densities is proportional to the encapsulated, charge densities measured by the PEA method on the interfacial homo-layer for the Kapton specimen. In the case of LDPE, a fast decrease of interfacial charge was observed, especially at a higher polarization field above 10 kV/mm. The encapsulation of the known charge amount can be extended to different types of multilayer material. The presented methodology might be used also for extended calibration of the PEA measurement system.
Rocznik
Strony
art. no. e140686
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • AGH University of Science and Technology, Department of Electrical and Power Engineering, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Department of Electrical and Power Engineering, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Z. Li and B. Du, “Polymeric Insulation for High-Voltage DC Extruded Cables: Challenges and Development Directions,” IEEE Electr. Insul. Mag., vol. 34, no. 6, pp. 30–43, 2018, doi: 10.1109/MEI.2018.8507715.
  • [2] G. Rizzo, P. Romano, A. Imburgia, and G. Ala, “Review of the PEA Method for Space Charge Measurements on HVDC Cables and Mini-Cables,” Energies, vol. 12, p. 3512, 2019.
  • [3] T. Tohmine, T. Fujitomi, H. Miyake, Y. Tanaka, Y. Ida, and Y. Inoue, “Measurement of Space Charge Accumulated in Multi-Layered Samples Composed of Different Insulators used in the Joints of DC Transmission Cables,” Proc. of Conference ISEIM, 2017.
  • [4] T. Takada, T. Tohmine, Y. Tanaka, J. Li, “Space charge accumulation in double-layer dielectric systems—measurement methods and quantum chemical calculations,” IEEE Electr. Insul. Mag., vol. 35, no. 5, pp. 36–46, 2019.
  • [5] M. Florkowski, Partial discharges in high-voltage insulating systems – mechanisms, processing, and analytics, AGH Press, Kraków, 2020.
  • [6] G.M. Sessler, J.E. West, D.A. Berkley, and G. Morgenster, “Determination of Spatial Distribution of Charges in Thin Dielectrics,” Phys. Rev. Lett., vol. 38, no. 7, p. 368, 1977.
  • [7] I.W. McAllister, G.C. Crichton, and A. Pedersen, “Charge Accumulation in DC Cables: A Macroscopic Approach,” IEEE Int. Symp. on Electrical Insulation, Pittsburgh, USA, 1994.
  • [8] K. Wu and C. Cheng, “Interface Charges between Insulating Materials,” IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 4, pp. 2633–2642, 2017.
  • [9] G. Teyssedre, F. Zheng, L. Boudou, and C. Laurent, “Charge trap spectroscopy in polymer dielectrics: a critical review,” J. Phys. D: Appl. Phys., vol. 54, p. 263001, 2021.
  • [10] M. Takashima, K. Soda, and T. Takada, “Measurement of electric charges at the interface between two dielectric layers using an electro-acoustic transducer technique,” IEEE Trans. Dielectr. Electr. Insul., vol. 23, no. 2, pp. 287–295, 1988.
  • [11] T. Takada and T. Sakai, “Measurement of Electric Fields at a Dielectric / Electrode Interface Using an Acoustic Transducer Technique,” IEEE Trans. Dielectr. Electr. Insul., vol. EI-18, no. 6, pp. 619–628, 1983.
  • [12] T. Maeno, “Portable space charge measurement system using the pulsed electroacoustic method,” Proc. 7th Int. Conf. on Properties and Applications of Dielectric Materials, Nagoya, 2003.
  • [13] G. Mazzanti, G.C. Montanari, and .M. Alison, “A space charge based method for the estimation of apparent mobility and trap depth as markers for insulation degradation-theoretical basis and experimental validation,” IEEE Trans. Dielectr. Electr. Insul., vol. 10, pp. 187–197, 2003.
  • [14] R. Bogega, P.H.F. Morshuis, and J.J. Smit, “Space Charge Signal Interpretation in a Multi-layer Dielectric Tested by Means of the PEA Method,” Int. Conf n. on Solid Dielectrics, Toulouse, France, 2004.
  • [15] G. Chen, “A new model for surface potential decay of coronacharged polymers,” J. Phys. D: Appl. Phys., vol. 43, p. 55405, 2010.
  • [16] T. Kan, K. Abe, H. Miyake, Y. Tanaka, and T. Maeno, “The influence of Corona Discharge on Space Charge Accumulation in Polyimide Film,” IEEE Conf. on Electrical Insulation and Dielectric Phenomena, 2013.
  • [17] M. Florkowski, B. Florkowska, M. Kuniewski, and P. Zydroń, “Mapping of Discharge Channels in Void Creating Effective Partial Discharge Area,” IEEE Trans. Dielectr. Electr. Insul., vol. 25, no. 6, pp. 2220–2228, 2018.
  • [18] M. Kunicki, “Variability of the Acoustic Emission Signals Generated by Partial Discharges in Mineral Oil,” Arch. Acoust., vol. 44, no. 2, pp. 339–348, 2019.
  • [19] M. Florkowski, “Influence of Insulating Material Properties on Partial Discharges at DC Voltage,” Energies, vol. 13, p. 4305, 2020.
  • [20] C. Pan, K. Wu, G. Chen, M. Florkowski, Z. Lv, and J. Tang, “Understanding Partial Discharge Behavior from the Memory Effect Induced by Residual Charges: A Review,” IEEE Trans. Dielectr. Electr. Insul., vol. 27, no. 6, pp. 1936–1950, 2020.
  • [21] M.A. Saleh, S.S. Refaat, M. Olesz, H. Abu-rub, and J. Guźiński, “The effect of protrusions on the initiation of partial discharges in XLPE high voltage cables,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e136037, 2021.
  • [22] M. Florkowski, “Imaging and simulations of positive surface and airborne streamers adjacent to dielectric material,” Measurement, vol. 186, p. 110170, 2021.
  • [23] M. Florkowski, D. Krześniak, M. Kuniewski, and P. Zydroń, “Surface discharge imaging in presence of deposited space charges in non-uniform electric field at DC voltage,” High Voltage, special issue “Partial Discharges at DC”, vol. 6, pp. 576–589, 2021.
  • [24] M.A. Andrade et al., “Interpretation of PEA Output Signal in a Multilayer Specimen,” IEEE Conf. on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, 2018.
  • [25] L.H. Pearson, J.R. Dennison, E.W. Griffiths, and A.C. Pearson, “PEA System Modeling and Signal Processing for Measurement of Volume Charge Distributions in Thin Dielectric Films,” IEEE Trans. Plasma Sci., vol. 45, no. 8, pp. 1955–1964, 2017.
  • [26] N. Kirigaya, K. Iguchi, H. Miyake, and Y. Tanaka, “Proposal of Calibration Method for Space Charge Distribution in Laminated Films Using PEA Measurement System,” Int. Symposium on Electrical Insulating Materials (ISEIM), 2020.
  • [27] M. Ieda, G. Sawa, and U. Shinohara, “A Decay Process of Surface Electric Charges across Poyethylene Film,” Jap. J. Appl. Phys. s, vol. 6, p. 793, 1967.
  • [28] M. Florkowski, B. Florkowska, and R. Włodek, “Investigations on Post Partial Discharge Charge Decay in Void Using Chopped Sequence,” IEEE Trans. Dielectr. Electr. Insul., vol. 26, no. 6, pp. 3831–3838, 2017.
  • [29] Z. Lei, C. Li, R. Men, and J. He, “Mechanism of bulk charging behavior of ethylene propylene rubber subjected to surface charge accumulation,” J. Appl. Phys., vol. 124, p. 244103, 2018.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6810c421-e17b-463a-823d-ba079f95d5ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.