PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Behavior of broadcast ionospheric-delay models from GPS, BeiDou, and Galileo systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The GNSS observations suffer from different types of errors that could affect the achieved positioning accuracy based on the receiver type used. Single-frequency receivers are widely used worldwide because of its low cost. The ionospheric delay considers the most challenging error for single-frequency GNSS observations. All satellite navigation systems, except GLONASS, are advising their users to correct for the ionospheric delay using a certain model. Those models' coefficients are sent to users in the system's navigation message. These models are different in their accuracy and behavior based on its foundation theory as well as the updating rate of their coefficients. The GPS uses Klobuchar model for mitigating the ionospheric delay. BeiDou system (BDS-2) adopts a slightly modified Klobuchar model that resembles GPS ICA (Ionospheric Correction Algorithm) with eight correction parameters but is formulated in a geographic coordinate system with different coefficients in origin and updating rate. Galileo system uses a different model (NeQuick model). This article investigates the behavior of the three models in correcting the ionospheric delay for three stations at different latitudes during 3 months of different states of ionospheric activity, comparing with International GNSS Service-Global Ionospheric Maps (IGS-GIMs). It is advised from this research's outputs to use the GPS model for mitigating the ionospheric delay in low-latitude regions during the state of low-and medium-activity ionosphere. It is advised to use the BeiDou model for mitigating the ionospheric delay in mid-latitude regions during different states of ionospheric activity. It is advised to use the Galileo model for mitigating the ionospheric delay in high-latitude regions during different states of ionospheric activity. Also, the Galileo model is recommended for mitigating the ionospheric delay for low-latitude regions during the state of high-activity ionosphere.
Słowa kluczowe
Rocznik
Strony
61--76
Opis fizyczny
Bibliogr. 21 poz., tab., wykr.
Twórcy
autor
  • College of Engineering, Aswan University, Aswan, Egypt
  • College of Engineering, King Saud University, Riyadh, KSA
Bibliografia
  • Bilitza, D. (2001). International Reference Ionosphere 2000. Journal of Radio Science, Vol. 36, No. 2, pp. 261-275.
  • Di Giovanni, G., Radicella, S., 1990. An analytical model of the electron density profile in the ionosphere. Adv. Space Res. 10 (11), 27-30.
  • European Commission (2016) .European GNSS (Galileo) Open Service Ionospheric Correction Algorithm for Galileo Single Frequency Users., Issue 1.2, Sep., 2016, pp. 4-29.
  • https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_Ionospheric_Model.pdf
  • Hernández-Pajares M., Juan J.M., Sanz J., Aragón-Àngel À., García-Rigo A., Salazar D., Escudero M. (2011). The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J. Geod. 85 (12): 887-907.
  • Hofmann-Wellenhof B., Lichtenegger H., Wasle E. (2008). GNSS-global navigation satellite systems - GPS, GLONASS, Galileo, and more. Springer, Vienna. doi:10.1007/978-3-211-73017-1.
  • IGS (2019a). The ionospheric coefficients for GPS, BeiDou and Galileo ionospheric models. (ftp://cddis.gsfc.nasa.gov/pub/gps/data/daily/2017/010/17p/) (Accessed 1/9/2019).
  • IGS (2019b). IGS-GIMs (International GNSS Service-Global Ionospheric Maps (IONEX format)) (ftp://cddis.gsfc.nasa.gov/gps/products/ionex/) (Accessed 1/9/2018).
  • Klobuchar, J. A. (1987). Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Transactions on Aerospace and Electronic Systems. Vol. AES-23, No. 3, pp. 325-331.
  • Kunches, J. M. and Klobuchar, J. A. (2001). Eye on The Ionosphere: GPS after SA. GPS Solutions 4(3), PP. 52-54.
  • Nava, B., Coïsson, P., Radicella, S.M., (2008). A new version of the NeQuick ionosphere electron density model. J. Atmos. Sol. Terr. Phys. 70 (15), 1856-1862.
  • Newby, S.P. and R.B. Langley (1992). Three alternative empirical ionospheric models -Are they better than the GPS Broadcast Model. Proceedings of the 6th International GeodeticSymposium on Satellite Positioning, Columbus, OH, 17-20 March, pp. 240-244.
  • Ningbo Wang, Zishen Li, Min Li, Yunbin Yuan, Xingliang Huo (2018). GPS, BDS and Galileo ionospheric correction models: An evaluation in range delay and position domain. Journal of Atmospheric and Solar-Terrestrial Physics (170) (2018) 83-91.
  • Prasad N, Sarma AD (2004). Ionospheric time delay estimation using IDW grid model for GAGAN. J Indian Geophys Union 8(4):319-327.
  • Prieto-Cerdeira, R., Orús-P_erez, R., Breeuwer, E., Lucas-Rodriguez, R., Falcone, M. (2014). Performance of the Galileo single-frequency ionospheric correction during in-orbit validation. GPS World 25 (6), 53-58.
  • Rovira-Garcia A., Juan J., Sanz J., González-Casado G., Ibáñez D., (2016). Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis. J. Geod. 90 (3): 229-240.
  • Sharma S, Galav P (2011). Longitudinal study of the ionospheric response to the geomagnetic storm of 15 May 2005 and manifestation of TADs. Ann Geophys 29:1063-1070.
  • SIDC (2019). Monthly mean total sunspot number [1/1749 - now]. (http://www.sidc.be/silso/datafiles). Accessed (1/9/2019).
  • Wang N, Li Z, Min L, Yuan Y, Huo X. (2018). GPS, BDS and Galileo ionospheric correction models: An evaluation in range delay and position domain. Journal of Atmospheric and Solar-Terrestrial Physics: S291327682. Volume 170, p. 83-91.
  • Wu, X., Hu, X., Wang, G., et al. (2013). Evaluation of COMPASS ionospheric model in GNSS positioning. Adv. Space Res. 51 (6): 959-968.
  • Zhao Wenjun, Qing Gao and Daliang Gong (2014). Analysis on Correction Accuracy of Ionospheric Model for BeiDou System. China Satellite Navigation Conference (CSNC). Proceedings: Volume I, Lecture Notes in Electrical Engineering 303, Springer.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-680ef934-76fc-43ba-8feb-8988f6b0a206
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.