PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The Potential Biosorption of Copper and Manganese by Bacterial Cellulose in the Environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the efficiency of copper and manganese adsorption by bacterial cellulose (BC) produced from Komagataeibacter intermedius BE073. BC was collected from production processes in a village in Nakhon Nayok province. BC had high moisture content of 91.15±3.68%, an average water absorption index (WAI) of 5.30±0.362, an average tensile strength of 99.1 ±6.18 MPa, average elongation at break of 6.41±0.67%, and an average Young modulus of 1445±177 MPa. Structural analysis of the BC material shows that it is a cellulose powder with a main group. Measurements show that the Mn content in BC rapidly decreased after soaking in solution, and that the highest Cu absorption efficiency of BC during a 120 minute period was 15469 mg kg-1. The results of this study show that BC may be successfully used to absorb various heavy metal residues from leachate, particularly Cu solutions. BC cannot absorb Mn from solution, so it cannot be used to absorb Mn from leachate. However, studies have shown that BC can release Mn into solution. Therefore, BC may be effective for use in agriculture, as Mn is a micronutrient for plants.
Rocznik
Strony
190--196
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Faculty of Environmental Culture and Ecotourism, Srinakharinwirot University, 10110 Bangkok, Thailand
  • Faculty of Environmental Culture and Ecotourism, Srinakharinwirot University, 10110 Bangkok, Thailand
  • Faculty of Engineering, Rajamangala University of Technology Thanyaburi, 12110 Pathum Thani, Thailand
Bibliografia
  • 1. Agarwala, S.C., Nautiyal, B.D., Chatterjee, C., and Sharma, C.P. 1988. Manganese, zinc and boron deficiency in mango. Scientia Horticulturae,35(1–2), 99–107.
  • 2. Amorim, L.F.A., Li., L., Gomes, A.P., Fangueiro, R., Gouveia, I.C. 2023. Sustainable bacterial cellulose production by low cost feedstock: evaluation of apple and tea by-products as alternative sources of nutrients. Cellulose,30, 5589–5606.
  • 3. Anderson, R.A., Conway, H.F., Pfeifer, V.F., Griffin, E. L. Jr. 1969. Gelatinization of corn grits by roll-and extrusion-cooking. Cereal Science Today, 14(1), 130–135.
  • 4. Bodea, I.M., Beteg, F.I., Pop, C.R., David, A.P, Dudescu, M.C., Vilău, C., Stănilă, A., Rotar, A.M., Cătunescu, G.M. 2021. Optimization of moist and oven-dried bacterial cellulose production for functional properties. Polymers,13(13), 2088.
  • 5. Carvalho, W.T., SoaresJunior, M.S., Caliari, M., Silva, F., Ribeiro, K.O. 2016. Physicochemical and functional characteristics of residual pulp of potato. Food Sci. Technol, Campinas, 36(4), 570–576.
  • 6. Cazon, P., Velazquez, G., Vazquez, M. 2020. Bacterial cellulose films: Evaluation of the water interaction. Food Packaging and Shelf Life, 25, 100526.
  • 7. Cheng, Y., Ke, Z., Bian, X., Zhang, J., Huang, Z., Lv, Y., Liu, M. 2019. Selective mineralization and recovery of Au(III) from multi-ionic aqueous Systems by Bacillus licheniformis FZUL–63. Minerals, 9(7), 392.
  • 8. Deng, L., Huang, Y., Chen, S., Han, Z., Hang, Z., Jin, M., Qu, X., Wang, B., Wang. H., Gu. S. 2023. Bacterial cellulose-based hydrogel with antibacterial activity and vascularization for wound healing. Carbohydrate Polymers, 308, 120647.
  • 9. Hishikawa, Y., Togawa, E.,Kondo, T. 2017. Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega, 2(4), 1469–1476.
  • 10. Kroeksakul, P., Ngamniyom, A., Silprasit, K., Tepamongkol, S., Teerapanaprinya, P., Saichanda, K. 2021. Evaluation of properties and elements in the surface of acidic soil in the central region of Thailand. Pertanika Journal Tropical Agriculture Science, 44(3), 541–563.
  • 11. Lebaka, V.R., Wee, Y.J., Ye, W., Korivi, M. 2021. Nutritional composition and bioactive compounds in three different parts of mango fruit. International journal of environmental research and public health, 18(2), 741.
  • 12. Maldonado-Celis, M.E., Yahia, E.M., Bedoya, R., Landázuri, P., Loango, N., Aguillón, J., Restrepo, B., Guerrero-Ospina, J.C. 2019. Chemical composition of mango (Mangifera indica L.) fruit: nutritional and phytochemical compounds. Frontiers in plant science, 10, 1073.
  • 13. Mohammadkazemi, F., Doosthoseini, K., Azin, M. 2014. Effect of ethanal and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC1734). Cellulose Chemistry and Technology, 49(5–6), 455–462
  • 14. Movasaghi, Z., Rehman, S.,ur Rehman, D. I. 2008. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews, 43(2), 134–179.
  • 15. Schrecker, S.T., Gostomski, P.A. 2005. Determining the water holding capacity of microbial cellulose. Biotechnology Letter, 27, 1435–1438.
  • 16. Shen, W., Chen, S., Shi, S., Li, X., Zhang, X. Hu, W., Wang, H. 2009. Adsorption of Cu(II) and Pb(II) on to diethylenetriamine-bacterial cellulose. Carbohydrate Polymers, 75, 110–114.
  • 17. Singhaboot, P., Kraisuwan, W., Chatkumpjunjalern, T., Kroeksakul, P., Chongkolnee, B. 2023. Development and characterization of polyvinyl alcohol/bacterial cellulose composite for environmentally friendly film. Journal of Ecological Engineering, 24(6), 226–238.
  • 18. Singhaboot, P., Kroeksakul, P. 2022. High performance of bacterial strain isolation from bio-extract for cellulase production. Pertaknika Journal Tropical Agricultural Science, 45(4), 1161–1175.
  • 19. Song, S., Liu, Z., Zhang, J., Jiao, C., Ding, L., Yang, S. 2020. Synthesis and adsorption properties of novel bacterial cellulose/graphene oxide/attapulgite material for Cu and Pb ions in aqueous solutions. Materials, 13, 3703.
  • 20. Top, B., Uguzdogan, E., Gogan, N.M., Arslan, S., Bozbeyoglu, N.N., Kabalay, B. 2021. Production and characterization of bacterial cellulose from Komagataeibacter xylinus isolated from home-made Turkish wine vinegar. Cellulose Chemistry and Technology, 55 (3–4), 243–254.
  • 21. Wohlert, M., Benselfelt, T., Wagberg, L., Furo´, I., Berglund, L.A., Wohlert, J.2022. Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose, 29, 1–23.
  • 22. Yingkong, P., Tanskul, S. 2019. Adsorption of iron(III) and copper(II) by bacterial cellulose from Rhodococcus sp. MI 2. Journal of Polymers and the Environment, 27, 1948–1958.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-680b6649-34ef-4908-99c9-496f91a3115a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.