PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Evaluation of Metal Artifact Reduction Algorithms in Computed Tomography: Siemens iMAR vs. GE MARS for Improved Radiotherapy Planning

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: In this article, the effectiveness of two commercial metal artifact reduction algorithms, Siemens iMAR and GE MARS, in computed tomography (CT) imaging is evaluated. Metal artifacts, which arise primarily due to the presence of high atomic number metals in clinical imaging, significantly degrade image quality and impede accurate diagnostics. Material and methods: The study compares monoenergetic and dual-energy CT reconstruction algorithms by examining their performance on phantom models, including a Gammex Tissue Characterization Phantom and a custom-made spine stabilization system phantom. Quantitative assessments, such as Hounsfield unit analysis were performed. Results: The results show that the iterative reconstruction algorithm (iMAR) from Siemens offers superior artifact suppression and image clarity compared to GE’s dual-energy algorithm (MARS), particularly in cases involving titanium implants. Quantitative assessments, such as Hounsfield unit measurements and visual image analysis, confirm that iMAR produces images with reduced artifacts and more consistent tissue characterization. Conclusions: These findings suggest that the choice of artifact reduction algorithm has a profound impact on the diagnostic and planning accuracy of CT scans in patients with metal implants.
Słowa kluczowe
Rocznik
Strony
195--201
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
  • Medical Physics Department, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków, Poland
  • Faculty of Physics and Applied Computer Science, AGH, Kraków, Poland
  • Department of Medical Physics, The University Hospital, Jagiellonian University, Kraków, Poland
  • Department of Health Sciences, Jagiellonian University, Collegium Medicum, Kraków, Poland
  • Department of Health Sciences, Jagiellonian University, Collegium Medicum, Kraków, Poland
  • Medical Physics Department, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków, Poland
  • Albert Einstein College of Medicine, Montefiore Einstein, New York, USA
  • Medical Physics Department, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków, Poland
Bibliografia
  • 1. Giantsoudi D, De Man B, Verburg J, et al. Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction. Phys Med Biol. 2017;62(8)-R80. doi: 10.1088/1361-6560/aa5293
  • 2. Puvanasunthararajah S, Fontanarosa D, Wille ML, et al. The application of metal artifact reduction methods on computed tomography scans for radiotherapy applications: A literature review. J Appl Clin Med Phys. 2021;22(6):198-223. doi: 10.1002/acm2.13255
  • 3. Gnanasambandam A, Raj NAN, Sollinselvan K. Effects of metal implants and validation of four treatment planning methods used for radiotherapy dose calculation. Rep Pract Oncol Radiother. 2022;27(5):821-831. doi: 10.5603/RPOR.a2022.0098
  • 4. Schwahofer A, Bär E, Kuchenbecker S, et al. The application of metal artifact reduction (MAR) in CT scans for radiation oncology by monoenergetic extrapolation with a DECT scanner. Z Med Phys. 2015;25(4):314-325. doi: 10.1016/j.zemedi.2015.05.004
  • 5. Kim C, Pua R, Lee CH, et al. An additional tilted-scan-based CT metal-artifact-reduction method for radiation therapy planning. J Appl Clin Med. Phys. 2019;20(1):237-249. doi: 10.1002/acm2.12523
  • 6. Andersson KM, Dahlgren CV, Reizenstein J, et al. Evaluation of two commercial CT metal artifact reduction algorithms for use in proton radiotherapy treatment planning in the head and neck area. Med Phys. 2018;45(10):4329-4344. doi: 10.1002/mp.13115
  • 7. Li B, Huang J, Ruan J, et al. Dosimetric impact of CT metal artifact reduction for spinal implants in stereotactic body radiotherapy planning. Quant Imaging Med Surg. 2023;13(12):8290-8302. doi: 10.21037/qims-23-442
  • 8. Murazaki H, Fukunaga J, Hirose TA, et al. Dosimetric assessment of a single-energy metal artifact reduction algorithm for computed tomography images in radiation therapy. Radiol Phys Technol. 2019;12(3):268-276. doi: 10.1007/s12194-019-00517-7
  • 9. Ziemann C, Stille M, Cremers F, et al. Improvement of dose calculation in radiation therapy due to metal artifact correction using the augmented likelihood image reconstruction. J Appl Clin Med Phys. 2018;19(3):227-233. doi: 10.1002/acm2.12325
  • 10. Hansen CR, Christiansen RL, Lorenzen EL, et al. Contouring and dose calculation in head and neck cancer radiotherapy after reduction of metal artifacts in CT images. Acta Oncol. 2017;56(6):874-878. doi: 10.1080/0284186X.2017.1287427
  • 11. Rousselle A, Amelot A, Thariat J, et al. Metallic implants and CT artefacts in the CTV area: Where are we in 2020? Cancer Radiother. 2020;24(6-7):658-666. doi: 10.1016/j.canrad.2020.06.022
  • 12. Maerz M, Mittermair P, Krauss A, et al. Iterative metal artifact reduction improves dose calculation accuracy: Phantom study with dental implants. Strahlenther Onkol. 2016;192(6):403-413. doi: 10.1007/s00066-016-0958-z
  • 13. Glide-Hurst C, Chen D, Zhong H, Chetty IJ. Changes realized from extended bit-depth and metal artifact reduction in CT. Med Phys. 2013;40(6):061711. doi: 10.1118/1.4805102
  • 14. Li H, Noel C, Chen H, et al. Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy. Med. Phys. 2012;39(12):7507-7517. doi: 10.1118/1.4762814
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-680b2f5d-b7ac-4359-af9d-60a28fcc85ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.