PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of dopants on structure of polycrystalline bismuth niobate

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bismuth niobate (BiNbO4) has attracted attention as a low-fired ceramics with promising microwave application potential. BiNbO4 ceramics was fabricated by mixed oxide method and sintered at temperature T<1000°C. As the sintering aids a small amount of CuO oxide was used. The crystalline structure of the ceramic samples was examined by X-ray diffraction method at room temperature. The Rietveld refinement method was used for analysis of diffraction data. As a result an influence of dopants on crystal structure of bismuth niobate (BiNbO4) ceramics was revealed. It was found that fabricated BiNbO4 ceramics adopted the orthorhombic symmetry (α-BiNbO4 phase, Pnna (52) space group). Small differences in elementary cell parameters were found.
Rocznik
Strony
35--41
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Welding, 80-233, Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Welding, 80-233, Gdańsk, Poland
Bibliografia
  • 1. W. Wersing, Microwave ceramics for resonators and filters, Current Opinion in Solid State and Materials Science 1, 5 (1996) 715-731.
  • 2. B. Jancar, D. Suvorov, Microwave ceramics, in: Ceramics Science and Technology, Volume 4: Applications, Edited by R. Riedel, I-W. Chen., Wiley-VCH Verlag GmbH & Co. KGaA, (2013), 321-343.
  • 3. M.T. Sebastian, Dielectric Materials for Wireless Communications, Elsevier, Oxford, (2008)
  • 4. Y.Ch. Liou, W.Ch. Tsai, H.M. Chen, Low-temperature synthesis of BiNbO4 ceramics using reaction-sintering process, Ceramics International 35 (2009) 2119–2122.
  • 5. M. Płońska, D. Czekaj, Studies of temperature and fabrication methods influence on structure and microstructure of BiNbO4 microwave electroceramics, Archives of Metallurgy and Materials 56, 4 (2011) 1169-1175.
  • 6. Z. Wang, X. Yao, L. Zhang, CeO2-modified BiNbO4 microwave ceramics sintered under atmosphere, Ceramics International 30 (2004) 1329–1333.
  • 7. Y. Pang, Ch. Zhong, Sh. Hang, Effects of Gd doping on the sintering and microwave dielectric properties of BiNbO4 ceramics, Journal of Materials Science 42 (2007), 7052–7055
  • 8. D. Shihua, Y. Xi, Y. Yong, Dielectric properties of B2O3-doped BiNbO4 ceramics, Ceramics International 30 (2004) 1195–1198.
  • 9. D. Zhou, H. Wang, X. Yao, Microwave dielectric properties and co-firing of BiNbO4 ceramics with CuO substitution, Materials Chemistry and Physics 104 (2007) 397–402.
  • 10. L. Zhang, X. Yao, H. Wang, D. Zhou, The effect of sintering atmosphere on V2O5 substituted BiNbO4 microwave ceramics, Journal of Electroceramics 21 (2008) 465–468.
  • 11. H.R. Lee, K.H. Yoon, E.S. Kim, J.W. Choi, R. Voucher, Microwave dielectric properties of BiNbO4 ceramics with CuO–V2O5 addition, Ceramics International 38S (2012) S177–S181
  • 12. H. Kagata, T. Inoue, J. Kato, I. Kameyama, Low-fire bismuth-based dielectric ceramics for microwave use, Japanese Journal of Applied Physics 31 (1992) 3152–3155.
  • 13. A. Koller (Ed.) Structure and Properties of Ceramics, Elsevier Science, 1994.
  • 14. A. Lisinska-Czekaj, D. Czekaj, Fabrication and study of BiNbO4 ceramics, Key Engineering Materials 512-515 (2012) 1212-1217.
  • 15. A. Lisinska-Czekaj, D. Czekaj, J. Plewa, Influence of processing conditions on crystal structure of BiNbO4 ceramics, Ciencia & Tecnologia dos Materiais 29 (2017) e215-e218
  • 16. MATCH! Version 2.0.11, CRYSTAL IMPACT, Postfach 1251, 53002 Bonn, Germany (URL: http://www.crystalimpact.com/match)
  • 17. ISCD Database, FIZ Karlsruhe, (URL.:http://www.fiz-karlsruhe.de)
  • 18. International Centre for Diffraction Data, 12 Campus Boulevard, Newton Square, PA 19073-3273 U.S.A.; (URL: http://www.icdd.com)
  • 19. IUCr/COD/AMCSD Database (URL.: http://www.crystalimpact.com.match)
  • 20. H.M. Rietveld, The Rietveld method-a historical perspective, Australian Journal of Physics (1988) 113-116.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6804b380-c199-472d-b676-239572e367f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.