PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation study on improving the spatial resolution of photon-counting hybrid pixel X-ray detectors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hybrid pixel radiation detectors with a direct photon-to-charge conversion working in a single photon counting mode have gained increasing attention due to their high dynamic range and noiseless imaging. Since sensors of different materials can be attached to readout electronics, they enable work with a wide range of photon energies. The charge-sharing effect observed in segmented devices, such as hybrid pixel detectors, is a phenomenon that deteriorates both spatial resolution and detection efficiency. Algorithms that allow the detection of a photon irrespective of the charge-sharing effect are proposed to overcome these limitations. However, the spatial resolution of the detector can be further improved beyond the resolution determined by the pixel size if information about the chargé proportions collected by neighbouring pixels is used to approximate the interaction position. In the article, an approach to achieve a subpixel resolution in a hybrid pixel detector working in the single photon counting mode is described. Requirements and limitations of digital inter-pixel algorithms which can be implemented on-chip are studied. In the simulations, the factors influencing the detector resolution are evaluated, including size of a charge cloud, number of virtual pixel subdivisions, and detector parameters.
Twórcy
  • AGH University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Krakow, Poland
  • AGH University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Krakow, Poland
Bibliografia
  • [1] Ballabriga, R. et al. Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging. J. Instrum. 11, P01007–P01007 (2016). https://doi.org/10.1088/1748-0221/11/01/P01007
  • [2] Taguchi, K. & Iwanczyk, J. S. Vision 20/20: Single photon counting X-ray detectors in medical imaging. Med. Phys. 40, 100901 (2013). https://doi.org/10.1118/1.4820371
  • [3] Bahadur, D. et al. Evolution of structure and dynamics of thermo-reversible nanoparticle gels-A combined XPCS and rheology study. J. Chem. Phys. 151, 10 (2019). https://doi.org/10.1063/1.5111521
  • [4] Sheyfer, D. et al. Nanoscale critical phenomena in a complex fluid studied by X-ray photon correlation spectroscopy. Phys. Rev. Lett. 125, 125504 (2020). https://doi.org/10.1103/PhysRevLett.125.125504
  • [5] Szczygiel, R., Grybos, P., Maj, P. & Zoladz, M. PXD18k – Fast Single Photon Counting Chip with Energy Window for Hybrid Pixel Detector. in 2011 IEEE Nuclear Science Symposium Conference Record. 932–937 (IEEE, Valencia, Spain 2011). https://doi.org/10.1109/NSSMIC.2011.6154126
  • [6] Nilsson, H. E., Dubari, E., Hjelm, M. & Bertilsson, K. Simulation of photon and charge transport in x-ray imaging semiconductor sensors. Nucl. Instrum. Methods Phys. Res. A. 487, 151–162 (2002). https://doi.org/10.1016/S0168-9002(02)00959-2
  • [7] Ballabriga, R. et al. The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J. Instrum. 8, C02016–C02016 (2013). https://doi.org/10.1088/1748-0221/8/02/C02016
  • [8] Krzyzanowska, A. et al. Characterization of the photon counting CHASE Jr., chip built in a 40-nm CMOS process with a charge-sharing correction algorithm using a collimated X-ray beam. IEEE Trans. Nucl. Sci. 64, 2561–2568 (2017). https://doi.org/10.1109/TNS.2017.2734821
  • [9] Bellazzini, R. et al. PIXIE III: a very large area photon-counting CMOS pixel ASIC for sharp X-ray spectral imaging. J. Instrum. 10, C01032–C01032 (2015). https://doi.org/10.1088/1748-0221/10/01/C01032
  • [10] Otfinowski, P. et al. Comparison of allocation algorithms for unambiguous registration of hits in presence of charge-sharing in pixel detectors. J. Instrum. 12, C01027–C01027 (2017). http://doi.org/10.1088/1748-0221/12/01/C01027
  • [11] Otfinowski, P., Deptuch, G. W. & Maj, P. Asynchronous approximation of a center of gravity for pixel detectors’ readout circuits. IEEE J. Solid-State Circuits 53, 1550–1558 (2018). https://doi.org/10.1109/JSSC.2018.2793530
  • [12] Cartier, C. et al. Micron resolution of MÖNCH and GOTTHARD, small pitch charge integrating detectors with single photon sensitivity. J. Instrum. 9, C05027–C05027 (2014). https://doi.org/10.1088/1748-0221/9/05/C05027
  • [13] Dreier, E. S. et al. Virtual subpixel approach for single-mask phase-contrast imaging using Timepix3. J. Instrum. 14, C01011 (2019). https://doi.org/10.1088/1748-0221/14/01/C01011
  • [14] Maj, P. et al. Measurements of ultra-fast single photon counting chip with energy window and 75 μm pixel pitch with Si and CdTe detectors. J. Instrum. 12, C03064 (2017). https://doi.org/10.1088/1748-0221/12/03/C03064
  • [15] Krzyzanowska, A., Niedzielska, A. & Szczygieł, R. Charge-sharing simulations for new digital algorithms achieving subpixel resolution in hybrid pixel detectors. J. Instrum. 15, C02047 (2020). https://doi.org/10.1088/1748-0221/15/02/C02047
  • [16] Lutz, G. Semiconductor Radiation Detectors, Device Physics. (Berlin, Heidelberg: Springer Berlin Heidelberg, 2007).
  • [17] NIST XCOM: Photon Cross Sections Database – Introduction. NIST http://www.physics.nist.gov/PhysRefData/Xcom/Text/intro.html (2017).
  • [18] P. Otfinowski, A. et al. Pattern recognition algorithm for charge-sharing compensation in single photon counting pixel detectors. J. Instrum. 14, C01017 (2019). https://doi.org/10.1088/1748-0221/14/01/C01017
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6801f7e0-43a2-4078-b641-609df5dd845e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.