Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, we investigated zooplankton composition and seasonal dynamics, as well as the influence of selected environmental factors on the zooplankton community in three ports on the Polish Baltic coast: Władysławowo, Gdynia and Gdańsk. Our aim was to determine whether harbours’ heavy traffic, chemical pollution and physical disturbances affect the zooplankton community, and whether new nonindigenous planktonic species occur in these habitats. Forty three zooplankton taxa were found in all three ports; however, it is important to note that no new nonindigenous species were observed in the port basins. The most influential environmental factors affecting the zooplankton community were: seawater temperature (17% of explained zooplankton variability) and transparency (4%), which were related to seasonal changes. Acartia spp. (although of different development stages) was the dominant taxon during the study, and the examined ports/seasons differed in the presence and proportions of less abundant taxa: the autumn and winter assemblages were dominated by Acartia spp. nauplii, the spring assemblage by numerous Polychaeta larvae, while Cirripedia nauplii and early development stages of Eurytemora affinis were particularly abundant in summer. In addition, changes in salinity (2% explained variability) had a particular impact on the zooplankton community and especially on the assemblage of Gdańsk Port, which was influenced by freshwater inflow from the Motława and Dead Vistula rivers. Our study has clearly shown that, despite severe physical and chemical disturbances in all studied ports, the composition and seasonal dynamics of the zooplankton community were similar to those of the Gulf of Gdańsk outside the ports.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
353--364
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
autor
- National Marine Fisheries Research Institute, Gdynia, Poland
autor
- University of Gdańsk, Faculty of Biology, Department of Evolutionary Genetics and Biosystematics, Laboratory of Biosystematics and Ecology of Aquatic Invertebrates, Gda´nsk, Poland
autor
- Institute of Oceanology Polish Academy of Sciences, Marine Ecology Department, Sopot, Poland
autor
- University of Gdańsk, Faculty of Oceanography and Geography, Department of Marine Biology and Biotechnology, Laboratory of Plankton Biology, Gdynia, Poland
autor
- Institute of Oceanology Polish Academy of Sciences, Marine Ecology Department, Sopot, Poland
Bibliografia
- 1. Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol 26, 32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
- 2. Anderson, M.J., Gorley, R.N., Clarke, K.R., 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E,Plymouth, UK.
- 3. AquaNIS, 2015. Information system on Aquatic Non-Indigenous and Cryptogenic Species. World Wide Web electronic publication. www.corpi.ku.lt/databases/aquanis. Version 2.36+. Accessed 2023-12.
- 4. Bielecka, L., Gaj, M., Mudrak, S., Żmijewska, M.I., 2000a. The seasonal and short-term variability of zooplankton taxonomic composition in the shallow coastal area of the Gulf of Gdańsk. Oceanol. Hydriobiol. Stud. 29, 57-76.
- 5. Bielecka, L., Żmijewska, M.I., Szymborska, A., 2000b. A new predatory cladoceran Cercopagis (Cercopagis) pengoi (Ostroumov 1891) in the Gulf of Gdańsk. Oceanologia 42 (3), 371-374.
- 6. Bolałek, J., Radke, B., 2010. Aspects of pollution in the harbours located near the river mouth using the example of the Gdańsk and Klaipeda harbours. Prace i Studia Geograficzne 44, 249-265 (in Polish with English abstract).
- 7. Casini, M., Lövgren, J., Hjelm, J., Cardinale, M., Molinero, J.C., Kornilovs, G., 2008. Multi-level trophic cascades in a heavily exploited open marine ecosystem. Proc. Royal Soc. B 275, 1793-1801. https://doi.org/10.1098/rspb.2007.1752
- 8. Chojnacki, J., 1984. Quantitative occurrence of Copepoda in Southern Baltic inshore waters. Crustaceana Supplement 126-136.
- 9. Clarke, K.R., Gorley, R.N., 2015. PRIMER V7: User manual/tutorial, PRIMER - E, Plymouth.
- 10. Conley, D.J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B.G., Hietanen, S., Kortekaas, M., Kuosa, H., Meier, H.E.M., Müller-Karulis, B., Nordberg, K., Norkko, A., Nürnberg, G., Pitkänen, H., Rabalais, N.N., Rosenberg, R., Savchuk, O.P., Slomp, C.P., Voss, M., Wulff, F., Zillén, L., 2009. Hypoxia-related processes in the Baltic Sea. Environ. Sci. Technol. 43, 3412-3420. https://doi.org/10.1021/es802762a
- 11. Dippner, J.W., Kornilovs, G., Sidrevics, L., 2000. Long-term variability of mesozooplankton in the central Baltic Sea. J. Marine Syst. 25, 23-31. https://doi.org/10.1016/S0924-7963(00)00006-3
- 12. Dzierzbicka-Głowacka, L., Kalarus, M., Musialik-Koszrowska, M., Lemieszek, A., Żmijewska, M.I., 2014. Seasonal variability in the population dynamics of the main mesozooplankton species in the Gulf of Gdańsk (southern Baltic Sea): Production and mortality rates. Oceanologia 57 (1), 78-85. https://doi.org/10.1016/j.oceano.2014.06.001
- 13. Ekau, W., Auel, H., Pörtner, H.O., Gilbert, D., 2010. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7, 1669-1699. https://doi.org/10.5194/bg-7-1669-2010
- 14. Elmgren, R., Hill, C., 1997. Ecosystem function at low biodiversity — the Baltic example. Mar. Biodivers. 319-336.
- 15. Figiela, M., Musialik-Koszarowska, M., Nowicki, A., Lemieszek, A., Kalarus, M., Druet, C., 2016. Long-term changes in the total development time of Copepoda species occurring in large numbers in the Southern Baltic Sea - numerical calculations. Oceanol. Hydrobiol. Stud. 45, 1-10. https://doi.org/10.1515/ohs-2016-0001
- 16. Filipkowska, A., Kowalewska, G., Pavoni, B., Łęczyński, L., 2011. Organotin compounds in surface sediments from seaports on the Gulf of Gdańsk (southern Baltic coast). Environ. Monit. Assess. 182, 455-466. https://doi.org/10.1007/s10661-011-1889-x
- 17. Fonselius, S.H., 1970. On the stagnation and recent turnover of the water in the Baltic, Fishery board of Sweden. Hydrographic Department Göteborg, 22, 533-544.
- 18. Helcom, 2009. Eutrophication in the Baltic Sea — an integrated the matic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. In: Baltic Sea Environment Proceedings 115B, Helsinki.
- 19. Helcom, 2021. Guidelines for monitoring of mesozooplankton. Manuals and Guidelines, Helcom. Available at: https://helcom.fi/wp- content/uploads/2019/08/Guidelines-for-monitoring-of-mesozooplankton.pdf.
- 20. IMO, 2004. International Convention for the control and management of Ships’ Ballast Water and Sediments. International Maritime Organization, London.
- 21. Janas, U., Zgrundo, A., 2007. First record of Mnemiopsis leidyi A. Agassiz, 1865 in the Gulf of Gdańsk (southern Baltic Sea). Aquat. Invasions 2, 450-454. https://doi.org/10.3391/ai.2007.2.4.18
- 22. Józefczuk, A., Guzera, E., Bielecka, L., 2003. Short-term and seasonal variability of mesozoplankton at two coastal stations (Gdynia, Sopot) in the shallow water zone of the Gulf of Gdańsk. Oceanologia 45 (2), 317-336.
- 23. Laine, A.O., Sandler, H., Andersin, A.B., Stigzelius, J., 1997. Long-term changes of macrozoobenthos in the Eastern Gotland Basin and the Gulf of Finland (Baltic Sea) in relation to the hydrographical regime. J. Sea Res. 38, 135-159.
- 24. Lampert, W., 1997. Zooplankton research: the contribution of limnology to general ecological paradigms. Aquat. Ecol. 31, 19-27. https://doi.org/10.1023/A:1009943402621
- 25. Lass, H.-U., Matthäus, W., 2008. General oceanography of the Baltic Sea. In: Feistel, R., Nausch, G., Wasmund, N. (Eds.), State and evolution of the Baltic Sea 1952-2005. John Wiley & Sons, Inc., Hoboken, N.J., 5-44.
- 26. Leppäkoski, E., Gollasch, S., Gruszka, P., Ojaveer, H., Olenin, S., Panov, V., 2002. The Baltic a sea of invaders. Can. J. Fish. Aquat. Sci. 59, 1175-1188. https://doi.org/10.1139/f02-089
- 27. Leppäkoski, E., Helminen, H., Hänninen, J., Tallqvist, M., 1999. Aquatic biodiversity under anthropogenic stress: an insight from the Archipelago Sea (SW Finland). Biodivers. Conserv. 8, 55-70. https://doi.org/10.1023/A:1008805007339
- 28. Line, R.J., 1984. On reproduction and mortality of zooplankton (Copepoda) in the South-eastern, Eastern and North-eastern Baltic. Articles on biological productivity of the Baltic Sea 2, 265-274.
- 29. Möllmann, C., Kornilovs, G., Sidrevics, L., 2000. Long-term dynamics of main mesozooplankton species in the central Baltic Sea. J. Plankton Res. 22, 2015-2038. https://doi.org/10.1093/plankt/22.11.2015
- 30. Möllmann, C., Köster, F., Kornilovs, G., Ludvigs, S., 2003. Interannual variability in population dynamics of calanoid copepods in the Central Baltic Sea. ICES Mar. Sci. Symposia 219, 220-230.
- 31. Mudrak, S., Żmijewska, M., 2007. Spatio-temporal variability of mesozooplankton from the Gulf of Gda´nsk (Baltic Sea) in 1999-2000. Oceanol. Hydrobiol. Stud. 36, 3-9. https://doi.org/10.2478/v10009-007-0007-4
- 32. Mudrak-Cegiołka, S., Bełdowska, M., Jędruch, A., 2013. Zooplankton w badaniach rtęci w strefie przybrzeżnej Zatoki Gdańskiej. In: Falkowska, L. (Ed.), Rtęć w środowisku: identyfikacja zagrożeń dla zdrowia człowieka. Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk, 165-170.
- 33. Musialik-Koszarowska, M., Dzierzbicka-Glowacka, L., Weydmann, A., 2019. Influence of environmental factors on the population dynamics of key zooplankton species in the Gulf of Gdańsk (southern Baltic Sea). Oceanologia 61 (1), 17-25. https://doi.org/10.1016/j.oceano.2018.06.001
- 34. Neira, C., Mendoza, G., Levin, L.A., Zirino, A., Delgadillo-Hinojosa, F., Porrachia, M., Deheyn, D.D., 2011. Macrobenthic community response to copper in Shelter Island Yacht Basin, San Diego Bay, California. Mar. Pollut. Bull. 62, 701-717. https://doi.org/10.1016/j.marpolbul.2011.01.027
- 35. Normant, M., Bielecka, L., Dmochowska, B., Dumnicka, E., Dziubińska, A., Jakubowska, M., Kobos, J., Łądkowska, H., Marszewska, L., Zgrundo, A., 2015. Detailed sampling results of the Port of Gdynia (Poland). In: Ruiz, M., Karhu, J., Backer, H. (Eds.), Testing monitoring methods for non-indigenous species in ports (Balsam project - work package 4). Baltic Marine Environment Protection Commission, HELCOM, Helsinki, 31-55.
- 36. Ojaveer, H., Jaanus, A., MacKenzie, B.R., Martin, G., Olenin, S., Radziejewska, T., Telesh, I., Zettler, M.L., Zaiko, A., 2010. Status of Biodiversity in the Baltic Sea. PLoS ONE 5, e12467. https://doi.org/10.1371/journal.pone.0012467
- 37. Ojaveer, H., Olenin, S., Narščius, A., Florin, A.B., Ezhova, E., Gollasch, S., Jensen, K.R., Lehtiniemi, M., Minchin, D., Normant-Saremba, M., Strāke, S., 2017. Dynamics of biological invasions and pathways over time: a case study of a temperate coastal sea. Biol. Invasions 19, 799-813.
- 38. Ojaveer, H., Põllumäe, A., Jaanus, A., Kotta, I., 2015. Detailed sampling results of the Port of Muuga Harbour, Port of Tallin (Estonia). In: Ruiz, M., Karhu, J., Backer, H. (Eds.), Testing monitoring methods for non-indigenous species in ports (Balsam project - work package 4). Baltic Marine Environment Protection Commission, HELCOM, Helsinki, 9-16.
- 39. Paturej, E., Gutkowska, A., 2015. The effect of salinity levels on the structure of zooplankton communities. Arch. Biol. Sci. 67, 483-492. https://doi.org/10.2298/ABS140910012P
- 40. Pustelnikovas, O., Dembska, G., Szefer, P., Radke, B., Bolałek, J., 2007. Distribution of migration (state) forms of microelements in the sediments of the ports of Klaipéda and Gdańsk.
- 41. Oceanol. Hydrobiol. Stud. 36, 129-149. https://doi.org/10.2478/v10009-007-0032-3
- 42. Radke, B., Łęczyński, L., Wasik, A., Namieśnik, J., Bolalek, J., 2008. The content of butyl-and phenyltin derivatives in the sediment from the Port of Gdansk. Chemosphere 73, 407-414. https://doi.org/10.1016/j.chemosphere.2008.05.020
- 43. Radke, B., Piketh, S., Wasik, A., Namieśnik, J., Dembska, G., Bolałek, J., 2013. Aspects of pollution in Gdansk and Gdynia Harbours at the coastal zone of the South Baltic Sea. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation 7, 11-18. https://doi.org/10.1016/10.12716/1001.07.01.01
- 44. Radke, B., Wasik, A., Jewell, L.L., Piketh, S., Pączek, U., Gałuszka, A., Namieśnik, J., 2012. Seasonal changes in organotin compounds in water and sediment samples from the semiclosed Port of Gdynia. Sci. Total Environ. 441, 57-66. https://doi.org/10.1016/j.scitotenv.2012.09.006
- 45. Razouls, C., de Bovée, F., Kouwenberg, J., Desreumaux, N., 2005-2017. Diversity and Geographic Distribution of Marine Planktonic Copepods. http://copepodes.obs-banyuls.fr/en (accessed on 14.02.2019).
- 46. Remane, A., 1934. Die Brackwasserfauna: Mit besonderer Berücksichtigung der Ostsee. Verh. Dtsch. Zool. Ges. 36, 34-74.
- 47. Remane, A., Schlieper, C., 1971. Biology of Brackish Water. Die Binnengewässer Vol. XXV. E. Schweizerbartsche Verlagsbuch-handlung, Stuttgart.
- 48. Shaikh, S.M.S., Tagde, J.P., Singh, P.R., Dutta, S., Sangolkar, L.N., Kumar, M.S., 2021. Impact of Port and harbour activities on plankton distribution and dynamics: A multivariate approach. Mar. Pollut. Bull. 165, 112105. https://doi.org/10.1016/j.marpolbul.2021.112105
- 49. Snoeijs-Leijonmalm, P., 2017. Patterns of diversity. In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (Eds.), Biological Oceanography of the Baltic Sea. Springer Science and Business Media, 123-192. https://doi.org/10.1007/978-94-007-0668-2_4
- 50. Strake, S., Alberte, M., Barda, L., Labucis, A., Labuce, A., Perkons, V., 2015. Detailed sampling results of the Port of Liepaja and Port of Riga (Latvia). In: Ruiz, M., Karhu, J., Backer, H. (Eds.), Testing monitoring methods for non-indigenous species in ports (Balsam project - work package 4). Baltic Marine Environment Protection Commission, HELCOM, Helsinki, 17-30.
- 51. Suikkanen, S., Pulina, S., Engström-Öst, J., Lehtiniemi, M., Lehtinen, S., Brutemark, A., 2013. Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS one 8, e66475. https://doi.org/10.1371/journal.pone.0066475
- 52. Telesh, I., Heerkloss, R., 2002. Atlas of Estuarine Zooplankton of the Southern and EasternBaltic Sea. Part I Rotifera. Verlag Dr. Kovac, Hamburg, 89 pp.
- 53. Telesh, I., Heerkloss, R., 2004. In: Atlas of Estuarine Zooplankton of the Southern and EasternBaltic Sea. Part II: Crustacea. Verlag Dr. Kovac, Hamburg, 118 pp.
- 54. Telesh, I.V., Khlebovich, V.V., 2010. Principal processes within the estuarine salinity gradient: a review. Mar. Pollut. Bull. 61, 149-155. https://doi.org/10.1016/j.marpolbul.2010.02.008
- 55. Vidjak, O., Bojanić, N., de Olazabal, A., Benzi, M., Brautović, I., Camatti, E., Hure, M., Lipej, L., Lučić, D., Pansera, M., Pećarević, M., Pestorić, B., Pigozzi, S., Tirelli, V., 2019. Zooplankton in Adriatic port environments: Indigenous communities and non-indigenous species. Mar. Pollut. Bull. 147, 133-149. https://doi.org/10.1016/j.marpolbul.2018.06.055
- 56. Viitasalo, M., Vuorinen, I., Saesmaa, S., 1995. Mesozooplankton dynamics in the northern Baltic Sea: implications of variations in hydrography and climate. J. Plankton Res. 17, 1857-1878. https://doi.org/10.1093/plankt/17.10.1857
- 57. Walczyńska, K.S., Søreide, J.E., Weydmann-Zwolicka, A., Ronowicz, M., Gabrielsen, T.M., 2019. DNA barcoding of Cirripedia larvae reveals new knowledge on their biology in Arctic coastal ecosystems. Hydrobiologia 837, 149-159. https://doi.org/10.1007/s10750-019-3967-y
- 58. Weydmann-Zwolicka, A., Balazy, P., Kuklinski, P., Søreide, J.E., Patuła, W., Ronowicz, M., 2021. Meroplankton seasonal dynamics in the high Arctic fjord: comparison of different sampling methods. Prog. Oceanogr. 190, 102484. https://doi.org/10.1016/j.pocean.2020.102484
- 59. Wiktor, K., 1990. Zooplankton, In: Majewski, A. (Ed.), Zatoka Gdańska, Wydawnictwo Geologiczne, Warszawa, 380-401.
- 60. Witalis, B., Iglikowska, A., Ronowicz, M., Kukliński, P., 2021. Biodiversity of epifauna in the ports of Southern Baltic Sea revealed by study of recruitment and succession on artificial panels. Estuar. Coast. Shelf Sci. 249, 107107. https://doi.org/10.1016/j.ecss.2020.107107
- 61. Żmijewska, M.I., Niemkiewicz, E., Bielecka, L., 2000. Abundance and species composition of plankton in the Gulf of Gdańsk near the planned underwater outfall of the Gdańsk-Wschód (Gdańsk-East) sewage treatment plant. Oceanologia 42 (3), 335-357.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67ff0b3d-5874-4b4e-970d-60801e367ca0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.