Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove a J1-tightness condition for embedded Markov chains and discuss four Skorokhod topologies in a unified manner. To approximate a continuous time stochastic process by discrete time Markov chains, one has several options to embed the Markov chains into continuous time processes. On the one hand, there is a Markov embedding which uses exponential waiting times. On the other hand, each Skorokhod topology naturally suggests a certain embedding. These are the step function embedding for J1, the linear interpolation embedding for M1, the multistep embedding for J2 and a more general embedding for M2. We show that the convergence of the step function embedding in J1 implies the convergence of the other embeddings in the corresponding topologies. For the converse statement, a J1-tightness condition for embedded time-homogeneous Markov chains is given. Additionally, it is shown that J1 convergence is equivalent to the joint convergence in M1 and J2.
Czasopismo
Rocznik
Tom
Strony
259--277
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- TU Dresden, Fachrichtung Mathematik, Institut für Mathematische Stochastik, 01062 Dresden, Germany
Bibliografia
- [1] D. Aldous, Stopping times and tightness, Ann. Probab. 6 (2) (1978), pp. 335-340.
- [2] F. Avram and M. S. Taqqu, Probability bounds for M-Skorohod oscillations, Stochastic Process. Appl. 33 (1) (1989), pp. 63-72.
- [3] P. Billingsley, Convergence of Probability Measures, Wiley, New York-London 1968.
- [4] B. Böttcher, On the construction of Feller processes with unbounded coefficients, Electron. Commun. Probab. 16 (2011), pp. 545-555.
- [5] B. Böttcher and R. L. Schilling, Approximation of Feller processes by Markov chains with Lévy increments, Stoch. Dyn. 9 (1) (2009), pp. 71-80.
- [6] B. Böttcher, R. Schilling, and J. Wang, Lévy -Type Processes: Construction, Approximation and Sample Path Properties, Lecture Notes in Math., Vol. 2099, Springer, Cham 2013.
- [7] S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York 1986.
- [8] I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Processes, Springer, Berlin 2007.
- [9] J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, second edition, Springer, Berlin 2003.
- [10] A. Jakubowski, A non-Skorohod topology on the Skorohod space, Electron. J. Probab. 2 (1997), pp. 1-21.
- [11] T. Lindvall, Weak convergence of probability measures and random functions in the function space D (0, ∞), J. Appl. Probab. 10 (1973), pp. 109-121.
- [12] P. Meyer and W. A. Zheng, Tightness criteria for laws of semimartingales, Ann. Inst. Henri Poincaré Probab. Stat. 20 (4) (1984), pp. 353-372.
- [13] J. L. Pomarede, A Unified Approach via Graphs to Skorohod’s Topologies on the Function Space D, Ph.D. Thesis, Yale University, ProQuest LLC, Ann Arbor, MI, 1976.
- [14] K. Sato, A note on convergence of probability measures on C and D, Ann. Sci. Kanazawa Univ. 14 (1977), pp. 1-5.
- [15] A. V. Skorokhod, Limit theorems for stochastic processes, Teor. Veroyatn. Primen. 1 (3) (1956), pp. 289-319.
- [16] F. Topsøe, A criterion for weak convergence of measures with an application to convergence of measures on D [0, 1], Math. Scand. 25 (1969), pp. 97-104.
- [17] W. Whitt, Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues, Springer, New York 2002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67fb9713-8711-47c2-a8ca-06bfcd5ecd63