PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badanie potencjału technologii iPAD-LiDAR w inwentaryzacji obiektów budowlanych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Studying the Potential of iPAD-LiDAR Technology in the Inventory of Building Structures
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono program badawczy mający na celu wstępne określenie potencjału technologii iPAD-LiDAR w inwentaryzacji obiektów budowlanych. Autorzy skupili się na wykorzystaniu komercyjnie dostępnych urządzeń (telefonów komórkowych i tabletów) wyposażonych w sensor LiDAR. Urządzenia takie można potraktować jako nisko kosztowe aparaty pomiarowe i zastosować do pomiarów inżynierskich. Pierwszym możliwym obszarem wykorzystania omawianych urządzeń są szeroko rozumiane inwentaryzacje budowlane, które przy wykonywaniu ich tradycyjnymi metodami zawsze wiążą się z dużym nakładem pracy. Automatyzacja tego procesu oraz jakość i ilość danych pozyskanych przy wykonywaniu inwentaryzacji tworzy zupełnie nową rzeczywistość techniczną i związane z tym możliwości pomiarowo-diagnostyczne.
EN
The article presents a research program aimed at preliminary determination of the potential of iPAD-LiDAR technology in the inventory of building structures. The authors focused on the use of commercially available devices (mobile phones and tablets) equipped with a LiDAR sensor. Such devices can be treated as low-cost measuring devices and used for engineering measurements. The first possible area of use of the devices discussed is broadly understood construction inventories, which, when performed using traditional methods, always involve a large amount of work. The automation of this process and the quality and quantity of data obtained during the inventory create a completely new technical reality and related measurement and diagnostic possibilities.
Słowa kluczowe
PL
EN
iPAD   LIDAR   scanning   tablet   low-cost  
Rocznik
Strony
55--61
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Politechnika Koszalińska, Wydział Inżynierii Lądowej, Środowiska i Geodezji; Katedra Geodezji i Geoinformatyki, ul. Śniadeckich 2, 75-453 Koszalin
autor
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Wydział Geoinżynierii, ul. M. Oczapowskiego 2, 10-719 Olsztyn
  • Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów PIAP, Al. Jerozolimskie 202, 02-486 Warszawa
autor
  • Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, al. Piastów 17, 70-310 Szczecin
Bibliografia
  • 1. Söderberg J., Wallerman J., Almäng A., Möller J.J., Willén E., Operational prediction of forest attributes using standardised harvester data and airborne laser scanning data in Sweden. “Scandinavian Journal of Forest Research”, Vol. 36, No. 4, 2021, 306-314, DOI: 10.1080/02827581.2021.1919751.
  • 2. Li M., Li Z., Liu Q., Chen E., Comparison of coniferous plantation heights using unmanned aerial vehicle (UAV) laser scanning and stereo photogrammetry. “Remote Sensing”, Vol. 13, No. 15, 2021, 13, DOI: 10.3390/rs13152885.
  • 3. Ma L., Li Y., Li J., Wang C., Wang R., Chapman M.A., Mobile laser scanned point-clouds for road object detection and extraction: A review. “Remote Sensing”, Vol. 10, No. 10, 2018, DOI: 10.3390/rs10101531.
  • 4. Xin Y., Wang R., Wang X., Wang X., Xiao Z., Lin J., High-Resolution Terrain Reconstruction of Slot Canyon Using Backpack Mobile Laser Scanning and UAV Photogrammetry. “Drones”, Vol. 6, No. 12, 2022, DOI: 10.3390/drones6120429.
  • 5. Suchocki C., Comparison of Time-of-Flight and Phase-Shift TLS Intensity Data for the Diagnostics Measurements of Buildings. “Materials”, Vol. 13, No. 2, 2020, DOI: 10.3390/ma13020353.
  • 6. Morena S., Barba S., Álvaro-Tordesillas A., Shining 3D EinScan-Pro, application and validation in the field of cultural heritage, from the Chillida-Leku museum to the archaeological museum of Sarno. [In:] Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. 42, 2019, 135-142, DOI: 10.5194/isprs-archives-XLII-2-W18-135-2019.
  • 7. Teppati Losè L., Spreafico A., Chiabrando F., Giulio Tonolo F., Apple LiDAR Sensor for 3D Surveying: Tests and Results in the Cultural Heritage Domain. “Remote Sensing”, Vol. 14, No. 17, 2022, DOI: 10.3390/rs14174157.
  • 8. Luetzenburg G., Kroon A., Bjørk A.A., Evaluation of the Apple iPhone 12 Pro LiDAR for an Application in Geosciences. “Scientific Reports”, Vol. 11, 2021, DOI: 10.1038/s41598-021-01763-9.
  • 9. Zaczek J., Evaluation of the LiDAR in the Apple iPhone 13 Pro for use in Inventory Works. [In:] Proceedings of the XXVII FIG Congress, 2022.
  • 10. Pedro M., Calvetti D., Exploring the Potential of iPad-LiDAR Technology for Building Renovation Diagnosis : A Case Study. “Buildings”, Vol. 13, No. 2, 2023, DOI: 10.3390/buildings13020456.
  • 11. Błaszczak-Bąk W., Suchocki C., Kozakiewicz T., Janicka J., Measurement methodology for surface defects inventory of building wall using smartphone with light detection and ranging sensor. “Measurement”, Vol. 219, 2023, DOI: 10.1016/j.measurement.2023.113286.
  • 12. Gollob C., Ritter T., Kraßnitzer R., Tockner A., Nothdurft A., Measurement of forest inventory parameters with apple ipad pro and integrated lidar technology. “Remote Sensing”, Vol. 13, No. 16, 2021, DOI: 10.3390/rs13163129.
  • 13. Razali M.I., Idris A.N., Razali M.H., Syafuan W.M., Quality Assessment of 3D Point Clouds on the Different Surface Materials Generated from iPhone LiDAR Sensor. “International Journal of Geoinformatics”, Vol. 18, No. 4, 2022, 51-58, DOI: 10.52939/ijg.v18i4.2259.
  • 14. Nowak R., Kania T., Rutkowski R., Ekiert E., Research and TLS (LiDAR) Construction Diagnostics of Clay Brick Masonry Arched Stairs. “Materials”, Vol. 15, No. 2, 2022, DOI: 10.3390/MA15020552.
  • 15. Truong-Hong L., Laefer D.F., Application of Terrestrial Laser Scanner in Bridge Inspection: Review and an Opportunity. “IABSE Symposium Report 2014”, Vol. 102, 2713-2720, DOI: 10.2749/222137814814070190.
  • 16. Nowak R., Orłowicz R., Rutkowski R., Use of TLS (LiDAR) for building diagnostics with the example of a historic building in Karlino. “Buildings”, Vol. 10, No. 2, 2020, DOI: 10.3390/buildings10020024.
  • 17. Xu X., Zhang L., Yang J., Cao C., Wang W., Ran Y., Tan Z., Luo M., A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LIDAR. “Remote Sensing”, Vol. 14, No. 12, 2022, DOI: 10.3390/rs14122835.
  • 18. Macario Barros A., Michel M., Moline Y., Corre G., Carrel F., A Comprehensive Survey of Visual SLAM Algorithms. “Robotics”, Vol. 11, No. 1, 2022, DOI: 10.3390/robotics11010024.
  • 19. Haleem A., Javaid M., Singh R.P., Rab S., Suman R., Kumar L., Khan I.H., Exploring the potential of 3D scanning in Industry 4.0: An overview. “International Journal of Cognitive Computing in Engineering”, Vol. 3, 2022, 161-171, DOI: 10.1016/j.ijcce.2022.08.003.
  • 20. PN-ISO 9836:2022-07 Właściwości użytkowe w budownictwie - Określanie i obliczanie wskaźników powierzchniowych i kubaturowych; 2022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67fad4fc-229c-4f69-a224-ce25d4e30fac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.