PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Simulation of Solidification Microstructure based on Adaptive Octree Grids

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main work of this paper focuses on the simulation of binary alloy solidification using the phase field model and adaptive octree grids. Ni-Cu binary alloy is used as an example in this paper to do research on the numerical simulation of isothermal solidification of binary alloy. Firstly, the WBM model, numerical issues and adaptive octree grids have been explained. Secondary, the numerical simulation results of three dimensional morphology of the equiaxed grain and concentration variations are given, taking the efficiency advantage of the adaptive octree grids. The microsegregation of binary alloy has been analysed emphatically. Then, numerical simulation results of the influence of thermo-physical parameters on the growth of the equiaxed grain are also given. At last, a simulation experiment of large scale and long-time has been carried out. It is found that increases of initial temperature and initial concentration will make grain grow along certain directions and adaptive octree grids can effectively be used in simulations of microstructure.
Rocznik
Strony
33--40
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wzory
Twórcy
autor
  • State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
autor
  • State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
autor
  • State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
autor
  • State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Bibliografia
  • [1] Wheeler, A.A., Boettinger, W.J. & McFadden, G.B. (1992). Phase-field model for isothermal phase transitions in binary alloys. Physical Review A. 45(10), 7424-7439. DOI: dx.doi.org/10.1103/PhysRevA.45.7424.
  • [2] Wheeler, A.A., Boettinger, W.J. & McFadden, G. B. (1993). Phase-field model of solute trapping during solidification. Physical Review E. 47(3), 1893-1909. DOI: dx.doi.org/10.1103/PhysRevE.47.1893.
  • [3] Boettinger, W.J. & Warren, J.A. (1996). The phase-field method: simulation of alloy dendritic solidification during recalescence. Metallurgical and Materials Transactions A, 27(3), 657-669. DOI: dx.doi.org/10.1007/BF02648953.
  • [4] Warren, J.A. & Boettinger, W.J. (1995). Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metallurgica et Materialia. 43(2), 689-703.
  • [5] Boettinger, W.J. & Warren, J.A. (1999). Simulation of the cell to plane front transition during directional solidification at high velocity. Journal of Crystal Growth. 200(3), 583-591. DOI: dx.doi.org/10.1016/S0022-0248(98)01063-X.
  • [6] Braun, R.J. & Murray, B.T. (1997). Adaptive phase-field computations of dendritic crystal growth. Journal of Crystal Growth. 174(1), 41-53. DOI: 10.1016/S0022-0248(96)01059-7.
  • [7] Kim, S.G., Kim, W.T. & Suzuki, T. (1999). Phase-field model for binary alloys. Physical Review E. 60(6), 7186-7197. DOI: dx.doi.org/10.1103/PhysRevE.60.7186.
  • [8] Kim, S.G., Kim, W.T. & Suzuki, T. (1998). Interfacial compositions of solid and liquid in a phase-field model with finite interface thickness for isothermal solidification in binary alloys. Physical Review E. 58(3), 3316-3323. DOI: dx.doi.org/10.1103/PhysRevE.58.3316.
  • [9] Boettinger, W.J., Warren, J.A., Beckermann, C. & Karma, A. (2002). Phase-field simulation of solidification 1. Annual Review of Materials Research. 32(1), 163-194. DOI: 10.1146/annurev.matsci.32.101901.155803.
  • [10] Provatas, N., Goldenfeld, N. & Dantzig, J. (1998). Efficient computation of dendritic microstructures using adaptive mesh refinement. Physical Review Letters. 80(15), 3308-3311. DOI: dx.doi.org/10.1103/PhysRevLett.80.3308.
  • [11] Provatas, N., Goldenfeld, N. & Dantzig, J. (1999). Adaptive mesh refinement computation of solidification microstructures using dynamic data structures. Journal of Computational Physics. 148(1), 265-290. DOI: 10.1006/jcph.1998.6122.
  • [12] Provatas, N., Greenwood, M., Athreya, B., Goldenfeld, N. & Dantzig, J. (2005). Multiscale modeling of solidification: phase-field methods to adaptive mesh refinement. International Journal of Modern Physics B, 19(31), 4525-4565. DOI: 10.1142/S0217979205032917.
  • [13] Zhao, P., Vénere, M., Heinrich, J.C. & Poirier, D.R. (2003). Modeling dendritic growth of a binary alloy. Journal of Computational Physics. 188(2), 434-461.
  • [14] Takaki, T., Fukuoka, T. & Tomita, Y. (2005). Phase-field simulation during directional solidification of a binary alloy using adaptive finite element method. Journal of Crystal Growth. 283(1), 263-278. DOI: 10.1016/j.jcrysgro.2005.05.064.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67f75331-82ac-4fde-b7e2-8101aadbbc54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.