PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Brittleness index analysis of coal samples

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The brittleness index (BI), which serves as a key reference for reservoir fracturing, is also an important quantitative index for the evaluation of coal-bed methane (CBM) reservoirs. To address the lack of research regarding this application of the BI, we measured the ultrasonic wave velocity of 10 coal samples collected from the Qinshui Basin, China. We then calculated the BI in three test directions, i.e., BI(90°), BI(45°), and BI(0°), as well as the BI anisotropy value (ABI) using the dynamic elastic method. Analysis of the calculated results showed that BI(90°) generally had the highest values and that BI(45°) was close to BI(0°). The ABI showed a positive correlation with the dynamic Young’s modulus anisotropy value, dynamic Poisson’s ratio anisotropy value, S-wave velocity anisotropy value, and the ratio of P-wave and S-wave velocity anisotropy values. However, the ABI had an unclear correlation with the P-wave velocity anisotropy value. Further analysis of the correlation between the BI and two other reservoir parameters (coal structure type and fracture development) revealed that samples with high BI values generally corresponded to primary or fragmented types of coal and also had low Poisson’s ratios, which indicates undeveloped fractures, while samples with low BI values corresponded to granulated types of coal and had high Poisson’s ratios, which indicates developed fractures. We investigated these correlations in order to understand the multiparameter constraints and their combined application in brittleness evaluations, which could reduce risk and improve the precision of ideal brittleness identification in CBM reservoirs.
Czasopismo
Rocznik
Strony
789--797
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • School of Earth and Environment Anhui University of Science and Technology Huainan People’s Republic of China
  • School of Earth and Environment Anhui University of Science and Technology Huainan People’s Republic of China
autor
  • School of Earth and Environment Anhui University of Science and Technology Huainan People’s Republic of China
autor
  • School of Resources and Geosciences China University of Mining and Technology Xuzhou People’s Republic of China
autor
  • Key Laboratory of Geotechnical Mechanics and Engineering of the Ministry of Water Resources Changjiang River Scientific Research Institute Wuhan People’s Republic of China
Bibliografia
  • 1. Altindag R (2003) Correlation of specific energy with rock brittleness concepts on rock cutting. J S Afr Inst Min Metall 103(3):163–171Google Scholar
  • 2. Chen J, Xiao X (2013) Mineral composition and brittleness of three sets of Paleozoic organic-rich shales in China South area. J China Coal Soc 38(5):822–826Google Scholar
  • 3. Copur H, Bilgin N, Tuncdemir H, Balci C (2003) A set of indices based on indentation tests for assessment of rock cutting performance and rock properties. J S Afr Inst Min Metall 103(9):589–599Google Scholar
  • 4. Diao H (2013) Rock mechanical properties and brittleness evaluation of shale reservoir. Acta Petrol Sin 29(9):3300–3306Google Scholar
  • 5. Dong S, Tao W (2008) Test on elastic anisotropic coefficients of gas coal. Chin J Geophys 51(3):671–677CrossRefGoogle Scholar
  • 6. Dong S, Wu H, Li D, Huang Y (2016) Experimental study of ultrasonic velocity and anisotropy in coal samples. J Seism Explor 25(2):131–146Google Scholar
  • 7. Fu X, Qin Y, Wei Z (2007) Coal-bed methane geology. China University of Mining and Technology Press, BeijingGoogle Scholar
  • 8. Guo Z, Li X, Liu C, Feng X, Ye S (2013) A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale. J Geophys Eng 10(2):1–10CrossRefGoogle Scholar
  • 9. Honda H, Sanada Y (1956) Hardness of coal. Fuel 35:451Google Scholar
  • 10. Huang X, Huang J, Li Z, Yang Q, Sun Q, Cui W (2015) Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs. Appl Geophys 12(1):11–22CrossRefGoogle Scholar
  • 11. Hucka V, Das B (1974) Brittleness determination of rocks by different methods. Int J Rock Mech Min Sci Geomech Abstr 11(10):389–392CrossRefGoogle Scholar
  • 12. Liu B, Xi D, Ge N, Wang B, Kern H, Popp T (2002) Anisotropy of Poisson’s ratio in Rock Samples at Different Confining Pressures. Chin J Geophys 45(6):880–890CrossRefGoogle Scholar
  • 13. Morcote A, Mavko G, Prasad M (2010) Dynamic elastic properties of coal. Geophysics 75(6):E227–E234CrossRefGoogle Scholar
  • 14. Peng S, Gao Y, Yang R, Chen H, Chen X (2005) Theory of application of AVO for detection of coalbed methane - A case from the Huainan coalfield. Chin J Geophys 48(6):1475–1486Google Scholar
  • 15. Peng S, Chen H, Yang R, Gao Y, Chen X (2006) Factors facilitating or limiting the use of AVO for coal-bed methane. Geophysics 71(4):C49–C56CrossRefGoogle Scholar
  • 16. Qian K, He Z, Chen Y, Liu X, Li X (2017) Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale. Appl Geophys 14(4):463–480CrossRefGoogle Scholar
  • 17. Quinn J, Quinn G (1997) Indentation brittleness of ceramics: a fresh approach. J Mater Sci 32(16):4331–4346CrossRefGoogle Scholar
  • 18. Ramos A (1997) 3-D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs. Geophysics 62(6):1683–1695CrossRefGoogle Scholar
  • 19. Rickman R, Mullen M, Petre J, Grieser B, Kundert D (2008) A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the barnett shale. SPE Technical Conference and Exhibition. Society of Petroleum Engineers: 115258Google Scholar
  • 20. Ulusay R (2015) The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014. Springer, BerlinGoogle Scholar
  • 21. Wang Y, Xu X (2012) Characteristics of P-wave and S-wave velocities and their relationships with density of six metamorphic kinds of coals. Chin J Geophys 55(11):3754–3761Google Scholar
  • 22. Wu H, Dong S, Li D, Huang P, Qi X (2015) Experimental study on dynamic elastic parameters of coal samples. Int J Min Sci Technol 25(3):447–452CrossRefGoogle Scholar
  • 23. Yu G, Vozoff K, Durney D (1991) Effects of confining pressure and water saturation on ultrasonic compressional wave velocities in coals. Int J Rock Mech Min Sci Geomech Abstr 28(6):515–522CrossRefGoogle Scholar
  • 24. Yu G, Vozoff K, Durney D (1993) The influence of confining pressure and water saturation on dynamic elastic properties of some Permian coals. Geophysics 58(1):30–38CrossRefGoogle Scholar
  • 25. Yuan J, Deng J, Zhang D, Li D, Yan W, Chen C, Cheng L, Chen Z (2013) Fracability evaluation of shale-gas reservoirs. Acta Petrol Sin 34(3):523–527Google Scholar
  • 26. Zhou F (2012) Experiment of influence of fractures on coal/rock acoustic velocities: with carboniferous seams of Qinshui basin as example. Coal Geol Explor 40(2):71–74
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67f678fd-889f-472f-8a8a-8c3311618e5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.