PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance assessment of PPP-AR positioning and zenith total delay estimation with modernized CSRS-PPP

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The precise point positioning (PPP) method has become more popular due to powerful online global navigation satellite system (GNSS) data processing services, such as the Canadian Spatial Reference System-PPP (CSRS-PPP). At the end of 2020, the CSRS-PPP service launched the ambiguity resolution (AR) feature for global positioning system (GPS) satellites. More reliable results are obtained with AR compared to the results with traditional ambiguity-float PPP. In this study, the performance of the modernized CSRS-PPP was comparatively assessed in terms of static positioning and zenith total delay (ZTD) estimation. Data for 1 month in the year 2019 obtained from 47 international GNSS service (IGS) stations were processed before and after modernization of the CSRS-PPP. The processes were conducted for GPS and GPS + GLONASS (GLObalnaya NAvigatsionnaya Sputnikovaya Sistema) satellite combinations. Besides, the results were analyzed in terms of accuracy and convergence time. According to the solutions, the AR feature of the CSRS-PPP improved the accuracy by about 50% in the east component for GPS + GLONASS configuration. The rootmean-square error (RMSE) of the ZTD difference between modernized CSRS-PPP service and IGS final troposphere product is 5.8 mm for the GPS-only case.
Rocznik
Strony
18--34
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Department of Geomatics Engineering, Necmettin Erbakan University, Konya, Turkey
  • Department of Geomatics Engineering, Necmettin Erbakan University, Konya, Turkey
Bibliografia
  • Alcay S., Gungor M. (2020). Investigation of ionospheric TEC anomalies caused by space weather conditions. Astrophysics and Space Science, 365(9), 1-15. https://doi.org/10.1007/s10509-020-03862-x.
  • Alcay S., Inal C., Yigit C., Yetkin, M. (2012). Comparing GLONASS-only with GPS-only and hybrid positioning in various length of baselines. Acta Geodaetica et Geophysica Hungarica, 47(1), 1-12. https://doi.org/10.1556/AGeod.47.2012.1.1.
  • Alcay S., Ogutcu S., Kalayci I., Yigit C.O. (2019). Displacement monitoring performance of relative positioning and Precise Point Positioning (PPP) methods using simulation apparatus, Advances in Space Research, 63, 5, 1697-1707. https://doi.org/10.1016/j.asr.2018.11.003.
  • Alcay S., Turgut M. (2021). Evaluation of the positioning performance of multi-GNSS RTPPP method, Arabian Journal of Geosciences, 14, 3, 155, https://doi.org/10.1007/s12517-021-06534-4.
  • Alcay S., Yigit C. O. (2017). Network based performance of GPS-only and combined GPS/GLONASS positioning under different sky view conditions. Acta Geodaetica et Geophysica, 52(3), 345-356. https://doi.org/10.1007/s40328-016-0173-5.
  • Atiz O.F., Alcay S., Ogutcu S. (2020). Investigation of the Performance of Galileo only Precise Point Positioning, International Conference on Engineering Technologies (ICENTE20), 19-21, November 2020, Konya, Turkey.
  • Banville S., (2020). CSRS-PPP Version 3: Tutorial, https://webapp.geod.nrcan.gc.ca/geod/tools-outils/sample_doc_filesV3/NRCan%20CSRSPPP-v3_Tutorial%20EN.pdf Accessed on 29.03.2021.
  • Banville S., Geng J., Loyer S., Schaer S., Springer T., Strasser S., (2020). On the interoperability of IGS products for precise point positioning with ambiguity resolution. Journal of Geodesy, 94(1), 10. https://doi.org/10.1007/s00190-019-01335-w.
  • Banville S., Hassen E., Lamothe P., Farinaccio J., Donahue B., Mireault Y., Goudarzi M. A., Collins P., Ghoddousi-Fard R., Kamali O. (2021). Enabling ambiguity resolution in CSRSPPP. Navigation, 68(2), 433-451. https://doi.org/10.1002/navi.423.
  • Bertiger W., Bar-Sever Y., Dorsey A., Haines B., Harvey N., Hemberger D., ... Willis P. (2020). GipsyX/RTGx, a new tool set for space geodetic operations and research. Advances in Space Research, 66(3), 469-489. https://doi.org/10.1016/j.asr.2020.04.015.
  • Bulbul S., Bilgen B., Inal C. (2021). The performance assessment of Precise Point Positioning (PPP) under various observation conditions. Measurement, 171, 108780. https://doi.org/10.1016/j.measurement.2020.108780.
  • Cai C., Gao Y. (2013). Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions, 17(2), 223-236. https://doi.org/10.1007/s10291-012-0273-9.
  • Cai C., Liu Z., Luo X. (2013). Single-frequency ionosphere-free precise point positioning using combined GPS and GLONASS observations. The Journal of Navigation, 66(3), 417-434. https://doi.org/10.1017/S0373463313000039.
  • Collins P., Bisnath S., Lahaye F., Héroux, P. (2010). Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation, 57(2), 123-135. https://doi.org/10.1002/j.2161-4296.2010.tb01772.x.
  • Elsobeiey M., Al-Harbi S. (2016). Performance of real-time Precise Point Positioning using IGS real-time service. GPS Solutions, 20(3), 565-571. https://doi.org/10.1007/s10291-015-0467-z.
  • Ge M., Gendt G., Rothacher M. A., Shi C., Liu J. (2008). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82(7), 389-399. https://doi.org/10.1007/s00190-007-0187-4.
  • Geng J., Chen X., Pan Y., Mao S., Li C., Zhou J., Zhang K. (2019). PRIDE PPP-AR: an opensource software for GPS PPP ambiguity resolution. GPS Solutions, 23(4), 1-10. https://doi.org/10.1007/s10291-019-0888-1.
  • Goudarzi M. A., Banville S., 2018. Application of PPP with ambiguity resolution in earth surface deformation studies: a case study in eastern Canada. Survey Review, 50(363), 531- 544. https://doi.org/10.1080/00396265.2017.1337951.
  • Guo Q. (2015). Precision comparison and analysis of four online free PPP services in static positioning and tropospheric delay estimation. GPS Solutions, 19(4), 537-544. https://doi.org/10.1007/s10291-014-0413-5.
  • Håkansson M., Jensen A. B., Horemuz M., Hedling G. (2017). Review of code and phase biases in multi-GNSS positioning. GPS Solutions, 21(3), 849-860. https://doi.org/10.1007/s10291-016-0572-7.
  • Hu H., Gao J., Yao Y., 2014. Land deformation monitoring in mining area with PPP-AR. International Journal of Mining Science and Technology, 24(2), 207-212. https://doi.org/10.1016/j.ijmst.2014.01.011.
  • Jokinen A., Feng S., Schuster W., Ochieng W., Hide C., Moore T., Hill C. (2013). GLONASS aided GPS ambiguity fixed precise point positioning. The Journal of Navigation, 66(3), 399-416. https://doi.org/10.1017/S0373463313000052.
  • Katsigianni G., Loyer S., Perosanz F., (2019). PPP and PPP-AR Kinematic Post-Processed Performance of GPS-Only, Galileo-Only and Multi-GNSS. Remote Sensing, 11(21), 2477. https://doi.org/10.3390/rs11212477.
  • Kouba J., Héroux P. (2001). Precise point positioning using IGS orbit and clock products. GPS Solutions, 5(2), 12-28. https://doi.org/10.1007/PL00012883.
  • Krasuski K., Ćwiklak J., Jafernik H. (2018). Aircraft positioning using PPP method in GLONASS system, Aircraft Engineering and Aerospace Technology, Vol. 90 No. 9, pp. 1413-1420. https://doi.org/10.1108/AEAT-06-2017-0147.
  • Krzan G., Przestrzelski P. (2016). GPS/GLONASS precise point positioning with IGS realtime service products. Acta Geodynamica et Geomaterialia, 13(1), 69-81. https://doi.org/10.13168/AGG.2015.0047.
  • Laurichesse D., Mercier F., Berthias J. P., Broca P., Cerri L. (2009). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation, 56(2), 135-149. https://doi.org/10.1002/j.2161-4296.2009.tb01750.x.
  • Leick A., Rapoport L., Tatarnikov D. (2015). GPS Satellite Surveying. John Wiley & Sons.
  • Li X., Li X., Yuan Y., Zhang K., Zhang X., Wickert J., (2018). Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo. Journal of Geodesy, 92(6), 579-608. https://doi.org/10.1007/s00190-017-1081-3.
  • Melbourne W.G. (1985). The case for ranging in GPS-based geodetic systems. 1st International Symposium on Precise Point Positioning with GPS. Rockville, Maryland.
  • Mendez Astudillo J., Lau L., Tang Y. T., Moore T. (2018). Analysing the zenith tropospheric delay estimates in on-line precise point positioning (PPP) services and PPP software packages. Sensors, 18(2), 580. https://doi.org/10.3390/s18020580.
  • Ogutcu S., (2020a). Performance analysis of ambiguity resolution on PPP and relative positioning techniques: consideration of satellite geometry. International Journal of Engineering and Geosciences, 5(2), 73-93. https://doi.org/10.26833/ijeg.580027.
  • Ogutcu S., (2020b). Assessing the contribution of Galileo to GPS+ GLONASS PPP: Towards full operational capability. Measurement, 151, 107143. https://doi.org/10.1016/j.measurement.2019.107143.
  • Ogutcu S., Kalayci, I. (2016). Investigation of network-based RTK techniques: a case study in urban area. Arabian Journal of Geosciences, 9(3), 1-12. https://doi.org/10.1007/s12517-015-2262-0.
  • Otsuka Y., Ogawa T., Saito A., Tsugawa T., Fukao S., Miyazaki S. (2002). A new technique for mapping of total electron content using GPS network in Japan. Earth, Planets and Space, 54(1), 63-70. https://doi.org/10.1007/s10291-006-0029-5.
  • Pikridas C., Katsougiannopoulos S., Zinas N. (2014). A comparative study of zenith tropospheric delay and precipitable water vapor estimates using scientific GPS processing software and web based automated PPP service. Acta Geodaetica et Geophysica, 49(2), 177-188. https://doi.org/10.1007/s40328-014-0047-7.
  • Shi J. (2012). Precise Point Positioning Integer Ambiguity Resolution with Decoupled Clocks (Unpublished doctoral thesis). University of Calgary, Calgary, AB. http://dx.doi.org/10.11575/PRISM/27397.
  • Shi J., Gao Y. (2014). A comparison of three PPP integer ambiguity resolution methods. GPS Solutions, 18(4), 519-528. https://doi.org/10.1007/s10291-013-0348-2.
  • Subirana J. S., Zornoza J. J., Hernández-Pajares M. (2013). GNSS Data Processing. Volume 1: Fundamentals and Algorithms. ESA Communications, ESTEC, PO Box, 299, 2200.
  • Takasu T., Yasuda A. (2009, November). Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In International symposium on GPS/GNSS (Vol. 1). International Convention Center, Jeju, Korea.
  • Tegedor J., Liu X., Ørpen O., Treffers N., Goode M., Øvstedal O., (2015). Comparison between multi-constellation ambiguity-fixed PPP and RTK for maritime precise navigation. Journal of Applied Geodesy, 9(2), 73-80. https://doi.org/10.1515/jag-2014-0028.
  • Tétreault P., Kouba J., Héroux P., Legree, P. (2005). CSRS-PPP: an internet service for GPS user access to the Canadian Spatial Reference Frame. Geomatica, 59(1), 17-28.
  • Wang G., Bao Y., Cuddus Y., Jia X., Serna J., Jing Q. (2015). A methodology to derive precise landslide displacement time series from continuous GPS observations in tectonically active and cold regions: a case study in Alaska. Natural Hazards, 77(3), 1939-1961. https://doi.org/10.1007/s11069-015-1684-z.
  • Wu Q., Sun M., Zhou C., Zhang P. (2019). Precise point positioning using dual-frequency GNSS observations on smartphone. Sensors, 19(9), 2189. https://doi.org/10.3390/s19092189.
  • Wübbena G. (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. 1st International Symposium on Precise Point Positioning with GPS. Rockville, Maryland.
  • Xiao G., Liu G., Ou J., Liu G., Wang S., Guo A. (2020). MG-APP: an open-source software for multi-GNSS precise point positioning and application analysis. GPS Solutions, 24(3), 1-13. https://doi.org/10.1007/s10291-020-00976-1.
  • Yigit C.O, Gikas V., Alcay S., Ceylan A. (2014). Performance evaluation of short to long term GPS, GLONASS and GPS/GLONASS post-processed PPP, Survey Review, 46(3), 155-166. https://doi.org/10.1179/1752270613Y.0000000068.
  • Zumberge J. F., Heflin M. B., Jefferson D. C., Watkins M. M., Webb F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102 (B3), 5005-5017. https://doi.org/10.1029/96JB03860.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67f2b819-076a-4b08-acf7-3dfd4b8a0ad3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.