PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal instability of a Rivlin-Ericksen nanofluid saturated by a Darcy-Brinkman porous medium: a more realistic model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study thermal instability in a horizontal layer of Rivlin-Ericksen elasticoviscous nanofluid in porous medium. Brinkman model is used as a porous medium and RivlinEricksen fluid model is used to describe the rheological behavior of nanofluid. In the earlier model (Chand and Rana [18]), we constrained both temperature and nanoparticle volume fractions at the boundaries of Rivlin-Ericksen nanofluid layer. In this paper, we assume that the value of temperature can be constrained on the boundaries, while the nanoparticle flux is zero on the boundaries. The considered boundary condition neutralizes the possibility of oscillatory convection due to the absence of two opposing forces, and only stationary convection occurs, in which Rivlin-Ericksen elastico-viscous nanofluid behaves like an ordinary nanofluid. The effects of Lewis number, medium porosity, modified diffusivity ratio, Darcy-Brinkman number and concentration Rayleigh number in stationary convection are discussed analytically and numerically. The results of this study are in good agreement with the results published earlier.
Rocznik
Strony
271--286
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
  • Department of Mathematics NSCBM Government P. G. College Hamirpur – 177005, Himachal Pradesh, India
autor
  • Department of Mathematics Government College Nurpur Himachal Pradesh, India
autor
  • Department of Mathematics and Statistics Himachal Pradesh University Shimla – 171 005, Himachal Pradesh, India
Bibliografia
  • 1. Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Oxford University Press, Dover Publication, New York, 1961.
  • 2. Bhatia P.K., Steiner J.M., Thermal instability of fluid layer in hydromagnetics, Journal of Mathematical Analysis and Applications, 41(2): 271–283, 1973.
  • 3. Sharma R.C., Thermal instability of viscoelastic fluid in hydromagnetics, Acta Physica Academiae Scientiarum Hungaricae, 38(4): 293–298, 1975.
  • 4. Ingham D., Pop L., Transport phenomena in porous media, Elsevier, New York, 1981.
  • 5. Nield D.A., Bejan A., Convection in porous media, Springer, New York, 2006.
  • 6. Rivlin R.S., Ericksen J.L., Stress-deformation relations for isotropic materials, Journal of Rational Mechanics and Analysis, 4(2): 323–334, 1955.
  • 7. Rana G.C., Sharma V., Effect of rotation on the onset of convection in Rivlin-Ericksen fluid heated from below in a Brinkman porous medium, International Journal of Fluid Mechanics Research, 39(6): 467–477, 2012.
  • 8. Rana G.C., Thakur R.C., Effect of suspended particles on thermal convection in RivlinEricksen fluid in a Darcy-Brinkman porous medium, Journal of Mechanical Engineering and Sciences, 2: 162–171, 2012.
  • 9. Choi S., Enhancing thermal conductivity of fluids with nanoparticles, [in:] Siginer D.A., Wang H.P. [Eds.], Developments and Applications of Non-Newtonian Flows, ASME FEDVol. 231/MD-Vol. 66, 99–105, 1995.
  • 10. Buongiorno J., Convective transport in nanofluids, ASME Journal of Heat Transfer, 128: 240–250, 2006.
  • 11. Tzou D.Y., Thermal instability of nanofluids in natural convection, International Journal of Heat and Mass Transfer, 51(11–12): 2967–2979, 2008.
  • 12. Tzou D Y., Instability of nanofluids in natural convection, ASME Journal of Heat Transfer, 130(7): 372–401, 2008.
  • 13. Nield D.A., Kuznetsov A.V., Thermal instability in a porous medium layer saturated by a nanofluid, International Journal of Heat and Mass Transfer, 52(25–26): 5796–5801, 2009.
  • 14. Alloui Z., Vasseur P., Reggio M., Natural convection of nanofluids in a shallow cavity heated from below, International Journal of Thermal Science, 50(3): 385–393, 2011.
  • 15. Sheu L.J., Thermal instability in a porous medium layer saturated with a visco-elastic nanofluid, Transport in Porous Media, 88: 461–477, 2011.
  • 16. Chand R., Rana G.C., On the onset of thermal convection in rotating nanofluid layer saturating a Darcy-Brinkman porous medium, International Journal of Heat and Mass Transfer, 55(21–22): 5417–5424, 2012.
  • 17. Chand R., Rana G.C., Kango S.K., Effect of variable gravity on thermal instability of rotating nanofluid in porous medium, FME Transactions, 43(1): 62–69, 2015.
  • 18. Chand R., Rana G.C., Thermal instability of Rivlin-Ericksen elastico-viscous nanofluid saturated by a porous medium, Journal of Fluid Engineering, 134(12): 121203–3, 2012.
  • 19. Nield D.A., Kuznetsov A.V., Thermal instability in a porous medium layer saturated by a nanofluid: a revised model, International Journal of Heat and Mass Transfer, 68: 211–214, 2014.
  • 20. Chand R., Rana G.C., Singh K., Thermal instability in a Rivlin-Ericksen elasticoviscous nanofluid in a porous medium: a revised model, International Journal of Nanoscience and Nanoengineering, 2(1): 1–5, 2015.
  • 21. Rana G.C., Chand R., On the onset of thermal convection in a rotating nanofluid layer saturating a Darcy-Brinkman porous medium: a more realistic model, Journal of Porous Media, 18(6): 629–635, 2015.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67ed85fb-b7f6-4717-beba-5aca770c6331
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.