Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wykorzystanie Archaea w bioaugmentacji osadu czynnego jako metody biologicznego usuwania związków azotu
Języki publikacji
Abstrakty
This paper examines the effect of Archaea on wastewater treatment in sequencing biological reactors (SBR). The research was carried out in two SBR reactors: a reactor with activated sludge bioaugmented with Archaea (microorganisms which constitute a third domain besides Bacteria and Eukaryotes); a reactor with conventional activated sludge was used as a control. Archaea were incubated in laboratory conditions as recommended by Archaea Solutions Inc. The research revealed that the time period required for the acclimation of the activated sludge in the presence of Archaea was twice as long as in the case of regular nitrifying activated sludge. The observed nitrogen and phosphorous removal from wastewater was achieved to a higher extent in sludge with Archaea and the sludge itself settled faster. The required concentration of oxygen in the reactor with Archaea was lower than in the classic set-up – this resulted in lowering the operating costs of the treatment plant. Furthermore, the denitrification process was significantly shorter and did not require nitrate nitrogen (V).
W pracy przebadano wpływ archeanów na proces oczyszczania ścieków w cyklicznych reaktorach biologicznych. Badania przeprowadzono w dwóch reaktorach typu SBR, z których jeden był poziomem odniesienia (oczyszczanie w warunkach klasycznych), a w drugim oczyszczano ścieki osadem czynnym poddanym bioaugmentacji archeanami, mikroorganizmami stanowiącymi trzecią domenę obok bakterii i eukariontów. Archeany były inkubowane w warunkach laboratoryjnych wg metody zalecanej przez ArchaeaSolutions, Inc. Badania wykazały, że adaptacja osadu czynnego do pracy w obecności archeanów wymaga dwa razy dłuższego czasu, niż zwykły osad czynny, zdolny do efektywnej nitryfikacji. Efektywność usuwania związków azotu i fosforu ze ścieków w obecności archeanów jest większa, a osad czynny szybciej sedymentuje. Wymagane stężenie tlenu w reaktorze z archeanami jest mniejsze niż w układzie klasycznym, co zmniejsza koszty eksploatacji oczyszczalni. Proces denitryfikacji jest znacznie skrócony i nie wymaga obecności azotanów(V).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
83--95
Opis fizyczny
Bibliogr. 23 poz., tab., il., wz., wykr.
Twórcy
autor
- Department of Environmental Technology, Faculty of Environmental Engineering, Cracow University of Technology
autor
- Department of Environmental Technology, Faculty of Environmental Engineering, Cracow University of Technology
Bibliografia
- [1] You J., Das A., Dolan E.M., Hu Z., Ammonia-oxidizing Archaea involved in nitrogen removal, Water Res. 43, (7), 1801, 2009.
- [2] Wakeham S.G., Lewis C.M., Hopmans E.C., Schouten S., Sinninghe Damsté J.S., Archaeamediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea, Geochimica et Cosmochimica Acta. 67, (7), 1359, 2003.
- [3] Francis C.A., Beman J.M., Kuypers M.M., New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation, International Society for Microbial Ecology Journal (ISMEJ), 1, (1), 19, 2007.
- [4] Sumino T., Isaka K., Ikuta H., Saiki Y., Yokota T., Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor, J. Biosci. Bioeng. 102, (4), 346, 2006.
- [5] Ishikawa K., Mino K., Nakamura T., New function and application of the cysteine synthase from Archaea, Biochemical Engineering Journal, 48, 315, 2010.
- [6] Hallam S.J., Putnam N., Preston C.M., Detter J.C., Rokhsar D., Richardson P.M., Delong E.F., Reverse methanogenesis: testing the hypothesis with environmental genomics, Science, 305, (5689), 1457, 2004.
- [7] Hallam S.J., Girguis P.R., Preston C.M., Richardson P.M., Delong E.F., Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing Archaea, Appl. Environ. Microbiol. 69, 5483, 2003.
- [8] Shima S., Thauer R.K., Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea, Curr. Opin. Microbiol. 8, (6), 643, 2005.
- [9] Cui Y.W., Ding J.R., Ji S.Y. Peng Y.Z., Start-up of halophilic nitrogen removal via nitrite from hypersaline wastewater by estuarine sediments in sequencing batch reactor, Int. J. Environ. Sci. Technol. 11, (2), 281, 2014.
- [10] Park H.D., Wells G.F., Bae H., Criddle C.S., Francis C.A., Occurrence of ammoniaoxidizing archaea in wastewater treatment plant bioreactors, Appl. Environ. Microbiol. 72, (8), 5643, 2006.
- [11] Gray N.D., Miskin I.P., Kornilova O., Curtis T.P., Head I.M., Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants, Environ. Microbiol. 4, (3), 158, 2002.
- [12] Anielak A.M., Polus M., Kinetics of the sewage treatment involvin an archaea-enriched system SBR, Przemysł Chemiczny, 94/9, 1485–1487, 2015.
- [13] Anielak A.M., Żaba T., Polus M., Beńko P., Bochnia T., Łuszczek B., The effectiveness of muncipal sewage treatment with archaea in sequence biological reactors and Bardenpho systems, Przemysł Chemiczny. 95/2, 314–319, 2016.
- [14] Limpiyakorn T., Sonthiphand P., Rongsayamanont C., Polprasert C., Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants, Bioresour Technol. 102, (4), 3694, 2011.
- [15] Oishi R., Hirooka K., Otawa K., Tada C., Nakai Y., Ammonia-oxidizing Archaea in laboratory-scale activated sludge systems for wastewater of low- or high-ammonium concentration, Anim Sci J. 83, (7), 571, 2012.
- [16] Fredriksson N.J., Hermansson M., Wilén B.M., Diversity and dynamics of Archaea in an activated sludge wastewater treatment plant, BMC Microbiol. 12, (140), 2012, doi: 10.1186/1471-2180-12-140.
- [17] Francis C.A., Roberts K.J., Beman J.M., Santoro A.E., Oakley B.B., Ubiquity and diversity of ammonia-oxidizing Archaea in water columns and sediments of the ocean, Proc. Natl. Acad. Sci. USA, 102, (41), 14683, 2005.
- [18] Rotthauwe J.H., Witzel K.P., Liesack W., The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations, Appl. Environ. Microbiol. 63, (12), 4704, 1997.
- [19] Delong E.F., Archaea in coastal marine environments, Proc. Natl. Acad. Sci. USA, 89, (12), 5685, 1992.
- [20] Grosskopf R., Janssen P.H., Liesack W., Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval, Appl. Environ. Microbiol. 64, (3), 960, 1998.
- [21] Chiang Y.C., Yang C.Y., Li C., Ho Y.C., Lin C.K., Tsen H.Y., Identification of Bacillus spp., Escherichia coli, Salmonella spp., Staphylococcus spp. and Vibrio spp. with 16S ribosomal DNA-based oligonucleotide array hybridization, Int. J. Food Microbiol. 107, (2), 131, 2006.
- [22] Van Niftrik L.A., Fuerst J.A., Sinninghe Damsté J.S., Kuenen J.G., Jetten M.S.M., Strous, M., The anammoxosome: An intracytoplasmic compartment in anammox bacteria, FEMS Microbiol. Lett. 233, 1, 2004.
- [23] Wang L., Zheng P., Chen T., Chen J., Xing Y., Ji Q., Zhang M., Zhang J., Performance of autotrophic nitrogen removal in the granular sludge bed reactor, Bioresour. Technol. 123, 78, 2012.
Uwagi
EN
Section "Environmental Engineering"
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67ed306d-a1a4-4853-9c88-37e408920794