Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, a procedure for optimal selection of measurement points using the D-optimality criterion to find the best calibration curves of measurement sensors is proposed. The coefficients of calibration curve are evaluated by applying the classical Least Squares Method (LSM). As an example, the problem of optimal selection for standard pressure setters when calibrating a differential pressure sensor is solved. The values obtained from the D-optimum measurement points for calibration of the differential pressure sensor are compared with those from actual experiments. Comparison of the calibration errors corresponding to the D-optimal, A-optimal and Equidistant calibration curves is done.
Czasopismo
Rocznik
Tom
Strony
413--424
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
autor
- Istanbul Technical University, Faculty of Aeronautics and Astronautics, Maslak, 34469, Istanbul, Turkey
Bibliografia
- [1] Prensky, S.D. (1971). Electronic Instrumentationü. 2nd ed. Englewood Cliffs, N.J.: Prentice Hall Inc.
- [2] Cooper, W.D. (1978). Electronic Instrumentation and Measurement Techniques. Englewood Cliffs, N.J.: Prentice Hall, Inc.
- [3] Vasilchenko, K.K., Leonov, V.A., Pashkovskiy, I.M. and Poplavskiy, B.K. (1996). Flight Testing of Aircrafts. 2nd ed. Moscow, Mashinostroyeniye.
- [4] Carlson, E.T. (1997). An instrumentation in the aerospace industry. Proc. of the International Symposium, Instrumentation Society of America, Research Triangle Park, NC, USA, 43, 567-582.
- [5] Moreno, J.G., Vigil-Escalera, J.L.M., Alvarez, R.S. (1999). Statistical measurement calibration based on state estimator results. Proc. of the IEEE Power Engineering Society Transmission and Distribution Conference, New Orleans, LA, USA, 1, 184-189.
- [6] Rezeki, S.M.S., Chan, W., Haskard, M.R., Mulcahy, D.E., Davey, D.E. (1999). Realization of self-diagnosis and self-calibration strategies using conventional signal processing and fuzzy approach for distributed intelligent sensor systems. Proc. of SPIE-The International Society for Optical Engineering. Newport Beach, CA, USA, 278-286.
- [7] Massicotte, D. Megner, B.M. (1999). Neural-network-based method of correction in a nonlinear dynamic measuring system. Proc. of IEEE Instrumentation and Measurement Technology Conference, Venice, Italy, 3, 1641-1646.
- [8] Bernieri, A., Betta, G., Dell’Isola, M. (1996). Statistical problems in calibration design. In Ciarlini, P., Cox, M.G., Pavese, F., Richter, D. (eds.) Advanced Mathematical Tools in Metrology, World Scientific, Singapore, 100-109.
- [9] Betta, G., Dell’Isola, M. (1996). Optimum choice of measurement points for sensor calibration. Measurement, 17, 115-125.
- [10] Betta, G., Dell’Isola, M. Frattolillo, A. (2001). Experimental design techniques for optimising measurement chain calibration. Measurement, 30, 115-127.
- [11] ISO, Guide for the Expression of Uncertainties in Measurement 1995, Geneva, Switzerland.
- [12] Schoen, M.P. (2007). Dynamic compensation of intelligent sensors. IEEE Transactions on Instrumentation and Measurement, 56, 1992-2001.
- [13] Yi, Y., Wu, H. (2007). An improved intelligent calibration method for vortex flowmeter. Proc. of the 2007 American Control Conference (ACC), 2927-2931.
- [14] Sroka, R. (2011). Application of sensitivity analysis to the correction of static characteristics of a phase angle modulator. Metrol. Meas. Syst., 18(2), 249-260.
- [15] Hajiyev, Ch. (2010). Determination of optimum measurement points via A-optimality criterion for the calibration of measurement apparatus. Measurement, 43, 563-569.
- [16] Jategaonkar, R.V. (2006). Flight Vehicle System Identification. A Time Domain Methodology. Reston Virginia, American Institute of Aeronautics and Astronautics, Inc.
- [17] Fu, L., Yang, X., Wang, L.L. (2013). A novel calibration procedure for dynamically tuned gyroscope designed by D-optimal approach. Measurement, 46, 3173-3180.
- [18] Wu, Z., Hu, X., Wu, M., Liu, P. (2013). D-optimal design applied to calibration of strapdown three-axis magnetometer. Proc. of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013), Paris, France, Atlantis Press, 0618-0623.
- [19] Hung, Yi, Lu. (2014). Application of optimal designs to item calibration. PLoS One, 9, e106747
- [20] Abdullayev, A.A., Gadzhiev, Ch.M. (1993). Metrological support to data-acquisition systems for oilproduct accounting. Measurement Techniques, 36, 977-981.
- [21] Hajiyev, Ch. (2009). Determination of optimum input signals via D-optimality criterion for calibration of measurement instruments. Advanced Mathematical & Computational Tools in Metrology & Testing: AMCTM VIII (Series on Advances in Mathematics for Applied Sciences - Vol. 78). Pavese, F., et al. (eds.), Singapore, World Scientific Publishing Co. Pte. Ltd., 154-157.
- [22] Reklaitis, G.V., Ravindran, A., Ragsdell, K.M. (1983). Engineering Optimization, Methods and Applications. 1, N.Y.: John Wiley and Sons.
- [23] Bandyopadhyay, A.K., Gupta, A.C. (1999). Realization of a national practical pressure scale for pressures up to 500 MPa. Metrologia, 36, 681-688.
- [24] Bell, S. (1999). A Beginner’s Guide to Uncertainty of Measurement. Measurement Good Practice Guide, 11(2), Centre for Basic, Thermal and Length Metrology, National Physical Laboratory. Crown Copyright.
- [25] Guıde for Evaluatıon of Uncertaınty in Calıbratıon. Sep., 22, 2008 CA, USA, Inter. Accreditation Service, Inc.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67e7304e-7559-4e44-9926-f8ba54418b5f