PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reliability analysis of sheet pile wall in spatially variable soil including CPTu test results

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with reliability analysis of cantilever sheet pile wall located in non-cohesive soil with random properties. Spatial variability of friction angle has been described using random fields theory. The influence of both vertical as well as horizontal scale of fluctuation on the mechanical response of sheet pile wall is investigated. Deflection of wall top as well as maximum bending moment in the sheet pile wall are tested. The point distribution of soil friction and its vertical fluctuation scale is estimated using quasi-continuous results of cone penetrometer tests (CPTu). The boundary value problem is solved using finite difference code FLAC. The Fourier series method (FSM) allowing for non-uniform meshes is used to generate random fields for individual realizations. By utilizing Monte Carlo Simulation (MCS) technique the probability distributions of the results for different values of vertical and horizontal scales of fluctuation are obtained and used for reliability analysis. The results of analysis show that in case of cantilever sheet pile wall it is very important to properly estimate value of vertical fluctuation scale for the reliability analysis. It is also illustrated that in the considered problem horizontal scale of fluctuation significantly influences probability of failure.
Rocznik
Strony
598--613
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
autor
  • Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wybrzeze Wyspianskiego 27, Wroclaw 50-370, Poland
autor
  • Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wybrzeze Wyspianskiego 27, Wroclaw 50-370, Poland
  • Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wybrzeze Wyspianskiego 27, Wroclaw 50-370, Poland
Bibliografia
  • [1] ISO 2394, General Principles on Reliability for Structures, International Organization for Standardization ISO, 2015.
  • [2] EN, Eurocode: Basis of Structural Design, The European Standard EN, 1990.
  • [3] K. Biernatowski, W. Pula, Probabilistic analysis of the stability of massive bridge abutments using simulation methods, Struct. Saf. 5 (1) (1988) 1–15.
  • [4] J.L. Doob, Stochastic processes, 1990 1953. New York..
  • [5] G.A. Fenton, D. Griffiths, Statistics of block conductivity through a simple bounded stochastic medium, Water Resour. Res. 29 (6) (1993) 1825–1830.
  • [6] D. Griffiths, G.A. Fenton, Seepage beneath water retaining structures founded on spatially randomsoil, Geotechnique 43 (4) (1993) 577–587.
  • [7] M.A. Hicks, K. Samy, Stochastic evaluation of heterogeneous slope stability, Ital. Geotech. J. 38 (2) (2004) 54–66.
  • [8] M.A. Hicks, W.A. Spencer, Influence of heterogeneity on the reliability and failure of a long 3D slope, Comput. Geotech. 37 (7) (2010) 948–955.
  • [9] D.V. Griffiths, J. Huang, G.A. Fenton, Influence of spatial variability on slope reliability using 2-D random fields, J. Geotech. Geoenviron. Eng. 135 (10) (2009) 1367–1378.
  • [10] M. Šejnoha, J. Sejnoha, M. Kalousková, J. Zeman, Stochastic analysis of failure of earth structures, Probabilist. Eng. Mech. 22 (2) (2006) 206–218.
  • [11] G.A. Fenton, D.V. Griffiths, Three-dimensional probabilistic foundation settlement, J. Geotech. Geoenviron. Eng. 131 (2) (2005) 232–239.
  • [12] G. Vessia, C. Cherubini, J. Pieczynska, W. Pula, Application of random finite element method to bearing capacity design of strip footing, J. GeoEng. 4 (3) (2009) 103–112.
  • [13] W. Pula, J.M. Pieczynska-Kozlowska, M. Chwala, Search for the Worst-Case Correlation Length in the Bearing Capacity Probability of Failure Analyses, In Geo-Risk 2017 (2017) 534–544.
  • [14] J.M. Pieczynska-Kozlowska, W. Pula, D.V. Griffiths, G.A. Fenton, Influence of embedment, self-weight and anisotropy on bearing capacity reliability using the random finite element method, Comput. Geotech. 67 (2015) 229–238.
  • [15] A. Srivastava, G.S. Babu, Effect of soil variability on the bearing capacity of clay and in slope stability problems, Eng. Geol. 108 (1–2) (2009) 142–152.
  • [16] D.V. Griffiths, J. Paiboon, J. Huang, G.A. Fenton, Reliability analysis of beams on random elastic foundations, Geotechnique 63 (2) (2013) 180.
  • [17] A. Rózanski, D. Stefaniuk, Prediction of soil solid thermal conductivity from soil separates and organic matter content: computational micromechanics approach, Eur. J. Soil Sci. 67 (5) (2016) 551–563.
  • [18] G.A. Fenton, D.V. Griffiths, M.B. Williams, Reliability of traditional retaining wall design, in: In Risk and Variability in Geotechnical Engineering, Thomas Telford Publishing, 2007, pp. 165–172.
  • [19] G. Dodagoudar, S. Sayed, K. Rajagopal, Random field modeling of reinforced retaining walls, Int. J. Geotech. Eng. 9 (3) (2015) 229–238.
  • [20] I. Papaioannou, D. Straub, Reliability updating in geotechnical engineering including spatial variability of soil, Comput. Geotech. 42 (2012) 44–51.
  • [21] S. Sert, Z. Luo, J. Xiao, W. Gong, C.H. Juang, Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variability, Comput. Geotech. 75 (2016) 182–191.
  • [22] Z. Luo, Y. Li, S. Zhou, H. Di, Effects of vertical spatial variability on supported excavations in sands considering multiple geotechnical and structural failure modes, Comput. Geotech. 95 (2018) 16–29.
  • [23] H. Yáñez-Godoy, A. Mokeddem, S.M. Elachachi, Influence of spatial variability of soil friction angle on sheet pile walls' structural behaviour, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 11 (4) (2017) 299–314.
  • [24] S.K. Jha, J. Ching, Simplified reliability method for spatially variable undrained engineered slopes, Soils Found. 53 (5) (2013) 708–719.
  • [25] T. Lunne, P.K. Robertson, J.J. Powell, M. Cone penetration testing in Geotechnical Practice, Taylor & Francis Ltd, 1997.
  • [26] P.K. Robertson, Soil behaviour type from the CPT: an update. In 2nd International Symposium on Cone Penetration Testing, USA, 2010, 9–11.
  • [27] P.K. Robertson, R.G. Campanella, Interpretation of cone penetration tests. Part I: sand, Can. Geotech. J. 20 (4) (1983) 718–733.
  • [28] P.K. Robertson, K.L. Cabal, Estimating soil unit weight from CPT, in: 2nd International Symposium on Cone Penetration Testing, 2010, 2–40.
  • [29] P.K. Robertson, K.L. Cabal, Guide to Cone Penetration Testing for Geotechnical Engineering, Gregg Drilling and Testing Inc., USA, 2010, pp. 6–15.
  • [30] W. Pula, On some aspects of reliability computations In bearing capacity of shallow foundations, in: In Probabilistic Methods in Geotechnical Engineering, Springer, Vienna, 2007, pp. 127–145.
  • [31] M. Lloret-Cabot, G.A. Fenton, M.A. Hicks, On the estimation of scale of fluctuation in geostatistics, Georisk Assess. Manage. Risk Eng. Syst. Geohazards 8 (2) (2014) 129–140.
  • [32] M. Uzielli, G. Vannucchi, K.K. Phoon, Random field characterization of stress-normalized cone penetration testing parameters, Geotechnique 55 (1) (2005) 3–20.
  • [33] G.A. Fenton, E.H. Vanmarcke, Simulation of random fields via local average subdivision, J. Eng. Mech. 116 (8) (1990) 1733–1749.
  • [34] K.K. Phoon, F.H. Kulhawy, Evaluation of geotechnical property variability, Can. Geotech. J. 36 (4) (1999) 625–639.
  • [35] M. Uzielli, S. Lacasse, F. Nadim, K.K. Phoon, Soil variability analysis for geotechnical practice, Characterization and engineering properties of natural soils, vol. 3, 2006, pp. 1653–1752.
  • [36] K. Senneset, N. Janbu, Shear strength parameters obtained from static cone penetration tests, in: Strength Testing of Marine Sediments. Special Technical Publication No. 883, ASTM, West Conshohocken, 1985, pp. 41–54.
  • [37] Z. Ouyang, P.W. Mayne, Calibrating NTH method for Fi in clayey soils using centrifuge CPTu, in: Cone Penetration Testing 2018, CRC Press, 2018, pp. 491–497.
  • [38] P.W. Mayne, Evaluating effective stress parameters and undrained shear strengths of soft-firm clays from CPTu and DMT, Aust. Geomech. J. 51.4 (2016) 27–55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67e45a4f-d396-4799-8a24-4dba0dda544e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.