PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Mineralogy and organic geochemistry of phyllite from the Dewon-Pokrzywna deposit, the Opava Mountains (SW Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phyllites from the Dewon-Pokrzywna deposit in the Opava Mts., SW Poland, were investigated by XRD (Rietveld method), XRF, EPMA, SEM, and ATR-FTIR from the perspective of their potential usage as a buffer and/or backfill material in a geological repository of radioactive waste. Organic matter dispersed in the phyllite matrix was analysed by GC-MS. Fine-grained Mg-Fe-muscovite (13 to 29 wt.%), Fe-ripidolite (10 to 25 wt.%), detrital quartz (20 to 46 wt.%), and albite (7 to 28 wt.%) ± microcline, illite or illite/smectite, and kaolinite are major minerals in phyllite samples. The chlorite/muscovite ratio ranges from 0.65 to 1.1. Mg-annite inherited from the precursor rock is a minor constituent. Detrital ilmenite is a dominant accessory mineral. Ancylite-(Ce) occurs in quartz-calcite-ripidolite veins. Two types of phyllite have been distinguished based on the proportion of phyllosilicates to silt fraction: argillaceous (47 to 55 wt.% phyllosilicates) and silt-rich (28 wt.% phyllosilicates). Argillaceous phyllite shows elevated content of alumina and moderate concentration of silica. It is highly enriched in Fe compared to phyllites from other localities worldwide. The BET specific surface area of argillaceous phyllite ranges from 1.73 to 3.64 m2/g. Whole-rock chemical composition, mineral assemblages, chlorite geothermometry, and the occurrence of aliphatic hydrocarbons suggest that argillaceous phyllite originated from a pelagic pelite protolith under low-temperature (260-370°C) greenschist to subgreenschist facies conditions. Persistent biomarkers are indicative of bacterial degradation of planktonic organic matter suspended in a high water column. Enrichment in Fe-rich chlorite and Mg,Fe-muscovite, low volume of interconnected pores with dominant mesopores suggest that argillaceous phyllite from the Dewon-Pokrzywna deposit is a potential candidate for a buffer and/or backfill material.
Słowa kluczowe
Rocznik
Strony
817--828
Opis fizyczny
Bibliogr. 52 poz., fot., rys., tab., wykr.
Twórcy
autor
  • University of Silesia, Faculty of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
autor
  • University of Silesia, Faculty of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
  • University of Silesia, Faculty of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • University of Silesia, Faculty of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
  • University of Silesia, Faculty of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Arnold, T., Zorn, T., Bernhard, G., Nitsche, H., 1998. Sorption of uranium (VI) onto phyllite. Chemical Geology, 151: 129-141.
  • 2. Arnold, T., Zorn, T., Zänker, H., Bernhard, G., Nitsche, H., 2001. Sorption behavior of U(VI) on phyllite: experiments and modeling, Journal of Contaminant Hydrology, 47: 219-231.
  • 3. Balan, E., Saitta, A.M., Mauri, F., Calas, G., 2001. First-principles modeling of the infrared spectrum of kaolinite. American Mineralogist, 86: 1321-1330.
  • 4. Bray, E.E., Evans, E.D., 1963. Distribution of n-paraffins as a clue to recognition of source beds. Geochimimica et Cosmochimica Acta, 22: 2-15.
  • 5. Bucher, K., Grapes, R., 2011. Petrogenesis of Metamorphic Rocks. Springer, Berlin, Heidelberg.
  • 6. Cathelineau, M., 1988. Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals, 23: 471-485.
  • 7. Clifton, C.G., Walters, C.C, Simoneit, B.R.T., 1990. Hydrothermal petroleums from Yellowstone National Park, Wyoming U.S.A. Applied Geochemistry, 5: 169-191.
  • 8. Cooper, B.S., 1990. Practical Petroleum Geochemistry. Robertson Scientific Publications, London.
  • 9. Da Silva Nogueira de Matos, J.H., Saraiva dos Santos, T.J., Soares Monteiro, L.V., 2017. The carbonaceous phyllite rock-hosted Pedra Verde copper mine, Borborema province, Brazil: stable isotope constraints, structural control and metallogenic evolution. Journal of South American Earth Sciences, 80: 422-443.
  • 10. Daniels, K.A., Harrington, J.F., Zihms, S.Z., Wiseall, A.C., 2017. Bentonite permeability at elevated temperature. Geosciences, 7, doi: 10.3390/geosciences7010003
  • 11. De Caritat, P., Hutcheon, I., Walshe, J.L., 1993. Chlorite geothermometry: a review. Clays and Clay Minerals, 41: 219-239.
  • 12. Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., Eglington, G., 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272: 216-222.
  • 13. Eberly, P.O., Ewing, R.C., Janeczek, J., Furlano, A., 1996. Clays at the natural nuclear reactor at Bangombe, Gabon: migration of actinides. Radiochimica Acta, 59: 271-275.
  • 14. Garzón, E.G., Sánchez-Soto, P. J., Romero, E., 2010. Physical and geotechnical properties of clay phyllites. Applied Clay Science, 48: 307-318.
  • 15. Garzón, E.G., Ruíz-Conde, A., Sánchez-Soto, P.J., 2012. Multivariate statistical analysis of phyllite samples based on chemical (XRF)and mineralogical data by XRD. American Journal of Analytical Chemistry, 3: 347-363.
  • 16. Garzón, E.G., Romero, E., Sánchez-Soto, P.J., 2016. Correlation between chemical and mineralogical characteristics and permeability of phyllite clays using multivariate statistical analysis. Applied Clay Science, 129: 92-101.
  • 17. Gasser, D., Bruand, E., Rubatto, D., Stüwe K., 2012. The behaviour of monazite from greenschists facies phyllites to anatectic gneisses: an example from the Chugach Metamorphic Complex, southern Alaska. Lithos, 134-135: 108-122.
  • 18. ISO 9277:2010. Determination of the specific surface area of solids by gas adsorption - BET method. https://www.iso.org/standard/44941.html
  • 19. Krakow, L., 2014. Resource efficiency in the clay brick and tile industry Part IX: Slate flour from phyllite sizing. Ziegelindustrie International. Brick and Tile Industry International. Issue 6 at http://www.zi-online.info/en/issue/zi_2014-06_1925050.html
  • 20. Krawczyk-Bärsch, E., Arnold, T., Schmeifter, N., Brandt, F., Bosbach, D., Bernhard, G., 2004. Formation of secondary Fe-oxyhydroxide phases during the dissolution of chlorite - effects on uranium sorption. Applied Geochemistry, 19: 1403-1414.
  • 21. Kříbek, B., Sýkorová I., Machowič, V., Laufek, F., 2008. Graphitization of organic matter and fluid-deposited graphite in Palaeoproterozoic (Birimian) black shales of the Kaya-Goren greenstone belt (Burkina Faso, West Africa). Journal of Metamorphic Geology, 26: 937-358.
  • 22. Leythauser, D., Schwartzkopf, Th., 1985. The pristane/n-heptadecane ratio as an indicator for recognition of hydrocarbon migration effects, Organic Geochemistry, 10: 191-197.
  • 23. Lo Pò, D., Braga, R., Massone, H.-J., 2016. Petrographic, mineral and pressure-temperature constraints on phyllites from the Variscan basement at Punta Bianca, Northern Apennines, Italy. Italian Journal of Geosciences, 135: 489-502.
  • 24. Melo, L.G.A., Pires, E.F.G., Pereira, R.A., Silva, F.J., 2017. Physicochemical characterization of pulverized phyllite rock for geopolymer resin synthesis. Materials Research. Doi: http://dx.doi.org/10.1590/1980-5373-MR-2016-0968
  • 25. Murakami, T., Isobe, H., Sato, T., Ohnuki, T., 1996. Weathering of chlorite in a quartz-chlorite schist: I. Mineralogical and chemical changes. Clays and Clay Minerals, 44: 244-256.
  • 26. Opara, K.D., Obioha, Y.E., Onyekuru, S.O., Okereke, C., Ibeneme, S.I., 2014. Petrology and geochemistry of basement complex rocks in Okom-Ita area, Oban massif, Southeastern Nigeria. International Journal of Geosciences, 5: 394-407.
  • 27. Oruzinsky, V., Kribek, B.K., 1981. Metamorphosed stratiform Cu-deposit of Tisova (Czechoslovakia). Mineralia Deposita, 16: 437-442.
  • 28. Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide. Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, Cambridge.
  • 29. Philp, R.P., 1985. Fossil Fuel Biomarkers. Application and Spectra. Elsevier, Amsterdam.
  • 30. Polish Nuclear Power Programme, 2014. Ministry of Economy. Warszawa (access: http://www.paa.gov.pl/sites/default/files/PPEJ%20eng.2014.pdf)
  • 31. Rasul, S.H., 1963. The chemical composition and original nature of the Dharwar phyllites of the Shivrajpur-Bamankus area, district Panch Mahals, Gujarat state. Proceedings of the Indian Academy of Sciences - Section A, 58: 343-351.
  • 32. Richter, C., Müller, K., Drobot, B., Steudtner, R., Groꞵmann, K., Stockmann, M., Brendler, V., 2016. Macroscopic and spectroscopic characterization of uranium(VI) sorption onto orthoclase and muscovite and the influence of competing Ca2+. Geochimica et Cosmochimica Acta, 189: 143-157.
  • 33. Rieder, M., Cavazzini, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, C., Guggenheim, S., Koval, P., Muller, G., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z., Wones, D.R., 1998. Nomenclature of the micas. The Canadian Mineralogist, 36: 41-48.
  • 34. Sahoo, P.R., Venkatesh, A.S., 2014. 'Indicator' carbonaceous phyllite/graphitic schist in the Archean Kundarkocha gold deposit, Singhbhum orogenic belt, eastern India: implications for gold mineralization vis-a-vis organic matter. Journal of Earth System Science, 123: 1693-1703.
  • 35. Saupé, F., Vegas, G., 1987. Chemical and mineralogical compositions of black shales (Middle Palaeozoic of the Central Pyrenees, Haute-Garonne, France). Mineralogical Magazine, 51: 357-369.
  • 36. Sawicki, L., 1955. Szczegółowa mapa geologiczna Sudetów (in Polish). Arkusz M33-71 Bb Głuchołazy.
  • 37. Sellin, P., Leupin, O.X., 2013. The use of clay as an engineered barrier in radioactive-waste management - a review. Clays and Clay Minerals, 61:477-498.
  • 38. Shahwan, T., Erten, H.N., 1999. Radiochemical study of Co2+ sorption on chlorite and kaolinite. Journal of Radioanalytical and Nuclear Chemistry, 241: 151-155.
  • 39. Shanmugam, G., 1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. AAPG Bulletin, 69: 1241-1254.
  • 40. Słomka, T., Doktor, M., Bartuś, T., Mastej, W., Łodziński, M., 2009. Geotourist attractions of the Eastern Sudetic Geostrada (in Polish with English summary). Geoturystyka, 4: 61-72.
  • 41. Stańczak, G., 2016. Slates, phyllites and schists from deposits of SW Poland used as dimension stones - evaluation of their decorativeness and the possibilities of use (in Polish with English summary). Przegląd Geologiczny, 64: 833-843.
  • 42. Strzyżewska-Konieczna, S., Żaba, J., 2002. Folds and the sequence of deformation of the Andelska Hora unit (Opava Mountains, Eastern Sudetes) (in Polish). Przegląd Geologiczny, 50: 1221-1222.
  • 43. Summons, R.E., Powell, T.G., Boreham, Ch.J., 1988. Petroleum geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons. Geochimica et Cosmochimica Acta, 52: 1747-1963.
  • 44. Tischendorf, G., Förster, H.-J., Gottesmann, B., Rieder, M., 2007. True and brittle micas: composition and solid solution series. Mineralogical Magazine, 71: 285-320.
  • 45. Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence, 2nd Edition. Springer-Verlag Telos, Berlin.
  • 46. Wiewióra, A., Weiss, Z., 1990. Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition: II. The chlorite group. Clay Minerals, 25: 83-92.
  • 47. Wiley, 2014. NBS Registry of Mass Spectral Data. New York, Wiley.
  • 48. Vernon, R.H., 2004. A practical guide to rock microstructures. Cambridge University Press.
  • 49. Van Zuilen, M.A., Lepland, A., Teranes, J., Finarelli, J., Wahlen, M., Arrhenius, G., 2003. Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precambrian Research, 126: 331-348.
  • 50. Yavuz, F., Kumral, M., Karakaya, N., Karakaya, M.Ç., 2015. A Window program for chlorite calculation and classification. Computers & Geosciences, 81: 101-113.
  • 51. Zänker, H., Hüttig, G., Arnold, T., Nitsche, H., 2006. Formation of iron-containing colloids by the weathering of phyllite. Aquatic Geochemistry, 12: 299-325.
  • 52. Żaba, J., Ciesielczuk, J., Malik, K., Strzyżewska-Konieczna, S.,2005. Structure and structural evolution of the Devonian-Carboniferous rocks of the Opava Mountains (Moravian-Silesian zone) (in Polish). In: Geologia i zagadnienia ochrony środowiska w regionie górnośląskim (eds. J. Jureczko, Z. Buła and J. Żaba): 116-127. LXXVI Zjazd naukowy Polskiego Towarzystwa Geologicznego, Rudy k/Rybnika, 14-16 września 2005.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67e160ee-fda5-42ba-ab33-a2bace2b2c59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.