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1. INTRODUCTION

Discrete fractional calculus is one of the most recent and interesting branches of
mathematics. In 1988, Gray and Zhang initiated the nabla approach of discrete
fractional calculus while Miller and Ross used the delta approach for the first
time in 1989. Abdeljawad, Anastassiou, Atici, Cermak, Chen, Eloe, Hein and many
other mathematicians have developed the qualitative theory of fractional nabla
difference equations. A series of research articles on this topic appeared recently
[1–3,5–8,11,12,14–16,22,23].

The first and foremost step in a qualitative study of fractional nabla difference
equations is to establish sufficient conditions on existence and uniqueness of its so-
lutions. But it is not obvious, unlike the theory of delta difference equations. For
example, consider a nonautonomous nabla difference equation together with an initial
condition of the form

∇u = f(t, u), t ∈ N1, (1.1)
u(0) = c, (1.2)
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where N0 = {0, 1, 2, . . .}, N1 = N0 \ {0}, u : N0 → R, f : N0 × R→ R and c ∈ R. We
know that u is a solution of the initial value problem (1.1)–(1.2) if and only if it has
the following representation

u(t) = c+
t∑

s=1
f(s, u(s)), t ∈ N0. (1.3)

Since f appears on the right hand side of equation (1.3), existence of u is not trivial.
It depends on the nature of f .

Similarly in this paper, we impose a few restrictions on f to obtain the existence,
uniqueness and continuous dependence of solutions of initial value problems associated
with nonlinear fractional nabla difference equations of the form

∇α−1u = f(t,u), 0 < α < 1, t ∈ N1, (1.4)(
∇−(1−α)
−1 u

)
(t)
∣∣∣
t=0

= u(0) = c, (1.5)

and

∇α0∗u = f(t,u), 0 < α < 1, t ∈ N1, (1.6)
u(0) = c, (1.7)

where ∇α−1 and ∇α0∗ are Riemann-Liouville and Caputo type fractional difference
operators respectively, u is an n-vector whose components are functions of the variable
t, c is a constant n-vector and f(t,u) is an n-vector whose components are functions
of the variable t and the n-vector u.

We present a few examples to illustrate the applicability of the main results. In
particular, we also investigate the existence and uniqueness of solutions of logistic,
prey-predator and SIR epidemic models in a discrete fractional nabla perspective.

2. PRELIMINARIES

This section is organized as follows. Subsection 2.1 contains preliminaries on discrete
fractional calculus. In Subsection 2.2 we construct novel Banach spaces.

2.1. DISCRETE FRACTIONAL CALCULUS

Throughout, we shall use the following notations, definitions and known results of
discrete fractional calculus. For any a ∈ R, Na = {a, a+ 1, a+ 2, . . .}. Let u : Na → R.
For all t1, t2 ∈ Na and t1 > t2,

t2∑
t=t1

u(t) = 0 and
t2∏
t=t1

u(t) = 1,

i.e. empty sums and products are taken to be 0 and 1, respectively.
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Definition 2.1. The gamma function is a generalization of the factorial function t!,
where the factorial is only applicable for t ∈ N0. The gamma function can be used for
any real number. For any t ∈ R \ {. . . ,−2,−1, 0},

Γ(t) =
∫ ∞

0
e−sst−1ds, t > 0,

Γ(t+ 1) = t Γ(t).

Definition 2.2. For any α, t ∈ R, the α rising function is defined by

tα = Γ(t+ α)
Γ(t) , 0α = 0.

We observe the following properties of gamma and rising factorial functions.

Lemma 2.3 ([19]). Assume the following factorial functions are well defined.

1. tα(t+ α)β = tα+β.
2. If t ≤ r then tα ≤ rα.
3. If α < t ≤ r then r−α ≤ t−α.

Lemma 2.4 ([20]). For any a, b ∈ R, the quotient expansion of two gamma functions
at infinity is given by

Γ(t+ a)
Γ(t+ b) = ta−b

[
1 +O

(1
t

)]
, |t| → ∞.

Definition 2.5. Let u : Na → R, α ∈ R and choose N ∈ N1 such that N−1 < α < N .

1. (Nabla Difference, [4]) The first order backward difference or nabla difference of u
is defined by

(∇u)(t) = u(t)− u(t− 1), t ∈ Na+1,

and the N th-order nabla difference of u is defined recursively by(
∇Nu

)
(t) =

(
∇
(
∇N−1u

))
(t), t ∈ Na+N .

In addition, we take ∇0 as the identity operator.
2. (Fractional Nabla Sum, [15]) The αth-order fractional nabla sum of u is given by

(
∇−αa u

)
(t) = 1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1u(s), t ∈ Na,

where ρ(s) = s−1. Also, we define the trivial sum by
(
∇−0
a u

)
(t) = u(t) for t ∈ Na.

3. (Riemann-Liouville Fractional Nabla Difference, [15]) The αth-order Riemann-Lio-
uville type fractional nabla difference of u is given by(

∇αau
)
(t) =

(
∇N

(
∇−(N−α)
a u

))
(t), t ∈ Na+N .

For α = 0, we set
(
∇0
au
)
(t) = u(t), t ∈ Na.
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4. (Caputo Fractional Nabla Difference, [1]) The αth-order Caputo type Fractional
Nabla Difference of u is given by(

∇αa∗u
)
(t) =

(
∇−(N−α)
a

(
∇Nu

))
(t), t ∈ Na+N .

For α = 0, we set
(
∇0
a∗u
)
(t) = u(t), t ∈ Na.

The unified definition for fractional nabla sum and differences is as follows.

Definition 2.6 ([1, 15]). Let u : Na → R, α ∈ R and choose N ∈ N1 such that
N − 1 < α < N .

1. The αth-order fractional nabla sum of u is given by

(
∇−αa u

)
(t) = 1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1u(s), t ∈ Na.

2. The αth-order Riemann-Liouville type fractional nabla difference of u is given by

(
∇αau

)
(t) = 1

Γ(−α)

t∑
s=a+1

(t− ρ(s))−α−1u(s), t ∈ Na+N .

3. The αth-order Caputo type fractional nabla difference of u is given by

(
∇αa∗u

)
(t) = 1

Γ(−α)

t∑
s=a+1

(t− ρ(s))−α−1u(s)

−
N−1∑
k=0

(t− a)k−α

Γ(k − α+ 1)
(
∇ku

)
(a), t ∈ Na+N .

Theorem 2.7 (Power Rule, [2]). Let α > 0 and µ > −1. Then the following condi-
tions hold:

1. ∇(t− a)µ = µ(t− a)µ−1, t ∈ Na+1,
2. ∇N (t− a)µ = Γ(µ+1)

Γ(µ−N+1) (t− a)µ−N , t ∈ Na+N ,
3. ∇−αa (t− a)µ = Γ(µ+1)

Γ(µ+α+1) (t− a)µ+α, t ∈ Na,
4. ∇αa (t− a)µ = Γ(µ+1)

Γ(µ−α+1) (t− a)µ−α, t ∈ Na+N ,
5. ∇αa∗(t− a)µ = Γ(µ+1)

Γ(µ−α+1) (t− a)µ−α, t ∈ Na+N .

2.2. CONSTRUCTION OF BANACH SPACES

In this subsection, we construct certain norms and establish Banach spaces with
respect to these norms.

Definition 2.8. Rn is the space of all ordered n-tuples of real numbers. Clearly, Rn is
a Banach space with respect to the Euclidean norm ‖ · ‖.
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Definition 2.9.

l∞ = l∞(Rn) = {u : u = {u(t)}t∈N0 ,u(t) ∈ Rn with ‖u‖∞ <∞}

denotes the Banach space comprising bounded sequences of vectors with respect to
the supremum norm ‖ · ‖∞ defined by

‖u‖∞ = sup
t∈N0

‖u(t)‖.

An open ball with radius r centered on the null vector sequence in l∞ is defined by

B∞r (0) = {u : ‖u‖∞ < r} ⊆ l∞.

Atsushi Nagai defined in [22] the one parameter discrete Mittag-Leffler function
of fractional nabla calculus as follows.

Definition 2.10. The one parameter discrete Mittag-Leffler function of fractional
nabla calculus is defined by

Fα(λ, t) =
∞∑
k=0

λk
tαk

Γ(αk + 1) ,

where 0 < α < 1, |λ| < 1 and t ≥ 0.

We observe the following properties of a discrete Mittag-Leffler function.

Lemma 2.11. Let 0 < λ < 1. Then

1. Fα(λ, 0) = 1,
2. Fα(λ, t) is monotonically increasing on [0,∞),
3. Fα(λ, t)→∞ as t→∞,
4. Fα(λ, t) : [0,∞)→ [1,∞),
5. ∇−α0 Fα(λ, t) = 1

λ

[
Fα(λ, t)− 1

]
.

Proof. (1) Consider

Fα(λ, t) = 1 +
∞∑
k=1

λk
tαk

Γ(αk + 1) = 1.
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(2) Let t, s ∈ N0 such that t ≥ s. Then t− s = T ∈ N0. Now consider

Fα(λ, t)− Fα(λ, s)

=
∞∑
k=0

λk

Γ(αk + 1)

[
tαk − sαk

]
=
∞∑
k=0

λk

Γ(αk + 1)

[Γ(t+ αk)
Γ(t) − Γ(s+ αk)

Γ(s)

]
=
∞∑
k=0

λk

Γ(αk + 1)

[Γ(s+ T + αk)
Γ(s+ T ) − Γ(s+ αk)

Γ(s)

]
=
∞∑
k=0

λk

Γ(αk + 1)
Γ(s+ αk)

Γ(s)

[(s+ T − 1 + αk

s+ T − 1

)(s+ T − 2 + αk

s+ T − 2

)
. . .
(s+ αk

s

)
− 1
]

=
∞∑
k=0

λk

Γ(αk + 1)
Γ(s+ αk)

Γ(s)

[(
1 + αk

s+ T − 1

)(
1 + αk

s+ T − 2

)
. . .
(

1 + αk

s

)
− 1
]

≥ 0.

Thus, we have Fα(λ, s) ≤ Fα(λ, t) whenever s ≤ t.

(3) As t→∞, from Lemma 2.4, we have

Fα(λ, t) =
∞∑
k=0

λk

Γ(αk + 1)
Γ(t+ αk)

Γ(t)

=
∞∑
k=0

λk

Γ(αk + 1) t
αk
[
1 +O

(1
t

)]
=
∞∑
k=0

(λtα)k

Γ(αk + 1)

[
1 +O

(1
t

)]
→∞.

The proof of (4) is obvious from (1), (2) and (3).

(5) Consider

∇−α0 Fα(λ, t) =
∞∑
k=0

λk

Γ(αk + 1)∇
−α
0 tαk

=
∞∑
k=0

λk

Γ(αk + 1)
Γ(αk + 1)

Γ(α(k + 1) + 1) t
α(k+1)

=
∞∑
k=0

λk

Γ(α(k + 1) + 1) t
α(k+1) =

∞∑
k=1

λk−1

Γ(αk + 1) t
αk = 1

λ

[
Fα(λ, t)− 1

]
.

Definition 2.12. l∞h denotes the Banach space comprising of bounded sequences of
real numbers with respect to the weighted supremum norm defined by

h : [0,∞)→ [1,∞), h(0) = 1, h(t)→∞ monotonically, and for u = {u(t)}t∈N0 ∈ l∞h ,

‖u‖h = sup
t∈N0

‖u(t)‖
h(t) .
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An open ball with radius r centered on the null vector sequence in l∞h is defined by

Bhr (0) = {u : ‖u‖h < r} ⊆ l∞h .

We use h(t) = Fα(λ, t) with 0 < λ < 1 throughout Section 3.

3. MAIN RESULTS

Existence of solutions of differential equations can be formulated well in terms of fixed
points of mappings. Motivated by this fact, we have discussed:

1. the existence and the uniqueness of solutions on N0,m ([19]),
2. the existence and the uniqueness of solutions on N0 ([18]),
3. the existence of asymptotically stable solutions on N0 ([17])

for the initial value problems (1.4)–(1.5) and (1.6)–(1.7) using fixed point theorems
based on the ideas of topological degree (Krasnoselskii and Schauder fixed point the-
orems) via the supremum norm in normed spaces. But, the conditions established
in [17–19] are applicable only for a particular class of functions. The following three
examples illustrates this fact.

1. Consider a scalar initial value problem

∇0.5
−1u = (0.25)(t+ 1)−0.75[u2 + 1],

(
∇−0.5
−1 u

)
(t)
∣∣∣
t=0

= u(0) = c, t ∈ N1.

2. Consider a scalar initial value problem

∇0.5
0∗ u = (0.5) sin u, u(0) = c, t ∈ N1.

3. Consider a discrete fractional order logistic equation together with an initial con-
dition of the form

∇α0∗u = ru[1− u], u(0) = c, t ∈ N1.

In Example 1, we cannot achieve global existence of solutions using the sufficient
conditions established in [18]. Similarly, the results formulated in [18] are not appli-
cable for the existence of solutions in Examples 2 and 3. In fact, we need localized
conditions for Examples 1 and 3 that guarantee the existence of solutions which will
be discussed in Section 3.4.

In this section, we establish some new results that guarantee the global / local
existence and uniqueness of solutions to the initial value problems (1.4)–(1.5) and
(1.6)–(1.7). Banach’s fixed point theorem will be the main tool to be used via the
supremum and weighted supremum norms in normed spaces.
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3.1. CONTRACTION MAPPING

Banach’s fixed point theorem (also known as the contraction mapping principle) has
been widely used as an important tool to determine the existence and uniqueness of
solutions of initial value problems defined on complete metric spaces.

Definition 3.1 (Contraction Mapping). Let (X, ρ) be a complete metric space and
P : X → X. The map P is said to be contractive if there exists a positive constant
a < 1 such that for each pair x, y ∈ X we have

ρ(Px, Py) ≤ aρ(x, y).

The constant a is called the contraction constant of P .

Theorem 3.2 (Banach Fixed Point Theorem). Let (X, ρ) be a complete metric space
and let P : X → X be contractive. Then P has a unique fixed point u ∈ X, that is,

Pu = u.

Consider the initial value problems (1.4)–(1.5) and (1.6)–(1.7). Then, u(t) is a
solution of the initial value problem (1.4)–(1.5) if and only if

u(t) = (t+ 1)α−1

Γ(α) c + 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1f(s,u(s)), t ∈ N0. (3.1)

Similarly, u(t) is a solution of the initial value problem (1.6)–(1.7) if and only if

u(t) = c + 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1f(s,u(s)), t ∈ N0. (3.2)

Define the operators

(Pu)(t) = (t+ 1)α−1

Γ(α) c + 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1f(s,u(s)), t ∈ N0, (3.3)

(P ′u)(t) = c + 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1f(s,u(s)), t ∈ N0. (3.4)

It is evident from (3.1)–(3.4) that u is a fixed point of P if and only if u is a solution
of (1.4)–(1.5) and u is a fixed point of P ′ if and only if u is a solution of (1.6)–(1.7).

3.2. ASSUMPTIONS

We make the following assumptions on f defined on N0 × Rn.

(C) f is continuous with respect to its second argument.
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(L1) There exists a nonnegative function a(t) defined on N0 such that, for all (t,u),
(t,v) ∈ N0 × Rn,

‖f(t,u)− f(t,v)‖ ≤ a(t)‖u− v‖.

(A1) Assume that

sup
t∈N0

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1a(s)
]

= L < 1.

(A2) Assume that

sup
t∈N0

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,0)‖
]

= Λ <∞.

(L2) f is Lipschitz continuous with respect to its second argument, i.e. there exists
a constant K ∈ [0, λ) such that, for all (t,u), (t,v) ∈ N0 × Rn,

‖f(t,u)− f(t,v)‖ ≤ K‖u− v‖. (3.5)

(B1) Assume that

‖f‖h = sup
t∈N0

‖f(t,0)‖
h(t) = Ω <∞.

Remark 3.3. In general, the Lipschitz constant K in (3.5) is independent of the
arguments of f but may depend on its domain. The following theorem (see [4]) is
useful for identifying if a given function satisfies the Lipschitz continuity in a given
domain.

Theorem 3.4. Let M > 0 be an arbitrary constant. Consider a function f defined
on N0 × Rn or on a region of the type

D = {(t,u) : ‖u(t)‖ ≤M} ⊆ N0 × Rn.

If f is continuously differentiable with respect to the second variable on N0×Rn (or D),
and suppose there exists a constant K > 0 such that, for all (t,u) = (t, u1, u2, . . . , un)
∈ N0 × Rn (or D), ∥∥∥∂f(t,u)

∂ui

∥∥∥ ≤ K, (i = 1, 2, . . . , n),

then f is Lipschitz continuous with respect to its second argument on N0×Rn (or D)
with Lipschitz constant K.

3.3. GLOBAL EXISTENCE AND UNIQUENESS

Theorem 3.5 (The nonautonomous case). Let (C), (L1), (A1) and (A2) hold. Then
there exists a unique solution of the initial value problems (1.4)–(1.5) and (1.6)–(1.7)
in l∞.
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Proof. We use Banach’s fixed point theorem (Theorem 3.2) to establish global
existence and uniqueness of solutions of the initial value problems (1.4)–(1.5) and
(1.6)–(1.7) in l∞. We know that l∞ is a complete metric space with respect to the
sup-metric defined by

ρ(u,v) = sup
t∈N0

‖u(t)− v(t)‖,

for each pair u, v ∈ l∞. First, we prove that P ′ maps l∞ into l∞. Let u ∈ l∞. Using
Lemma 2.3, Theorem 2.7, (L1), (A1) and (A2), we have

‖(P ′u)(t)‖ ≤ ‖c‖+ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,u(s))‖

= ‖c‖+ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,u(s))− f(s,0) + f(s,0)‖

≤ ‖c‖+ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,u(s))− f(s,0)‖

+ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,0)‖

≤ ‖c‖+ ‖u‖∞
[ 1

Γ(α)

t∑
s=1

(t− ρ(s))α−1a(s)
]

+ Λ

≤ ‖c‖+ L‖u‖∞ + Λ <∞, t ∈ N0,

implies P ′u ∈ l∞. For all u, v ∈ l∞, using Lemma 2.3, Theorem 2.7, (L1) and (A1),
we have

‖(P ′u)(t)− (P ′v)(t)‖ ≤ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,u(s))− f(s,v(s))‖

≤ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1a(s)‖u(s)− v(s)‖

≤ L‖u− v‖∞, t ∈ N0,

implies ‖P ′u − P ′v‖∞ ≤ L‖u − v‖∞. Since L < 1, P ′ is contractive. Hence, by
Theorem 3.2, P ′ has a unique fixed point u ∈ l∞. Similarly, we can prove that P has
a unique fixed point u ∈ l∞. Hence the proof.

Corollary 3.6 (The autonomous case). If f is constant with respect to its first ar-
gument and let (C), (L1), (A1) and (A2) hold, then there exists a unique solution of
the initial value problems (1.4)–(1.5) and (1.6)–(1.7) in l∞.
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The following example demonstrates the applicability of Theorem 3.5.

Example 3.7. Consider the scalar initial value problem

∇0.5
−1u = (0.25)(t+ 1)−0.75 sin u, t ∈ N1, (3.6)(

∇−0.5
−1 u

)
(t)
∣∣∣
t=0

= u(0) = c. (3.7)

We have f(t, u) = (0.25)(t + 1)−0.75 sin u is continuous with respect to its second
argument. For any u, v ∈ R and for all t ∈ N0,

|f(t, u)− f(t, v)| ≤ (0.25)(t+ 1)−0.75|u− v|.

Here a(t) = (0.25)(t+ 1)−0.75 is a nonnegative function defined on N0 and

L = sup
t∈N0

[ (0.25)
Γ(0.5)

t∑
s=1

(t− ρ(s))0.5−1(s+ 1)−0.75
]

= sup
t∈N0

[ (0.25)
Γ(0.5)

t∑
s=0

(t− ρ(s))0.5−1(s+ 1)−0.75 − (0.25)
Γ(0.5)(t+ 1)0.5−1(1)−0.75

]
= sup
t∈N0

[
(0.25)∇−0.5

−1 (t+ 1)−0.75 − (0.25)Γ(0.25)
Γ(0.5) (t+ 1)−0.5

]
= sup
t∈N0

[
(0.25)Γ(0.25)

Γ(0.75)(t+ 1)−0.25
]
− (0.25)Γ(0.25)

Γ(0.5) inf
t∈N0

[
(t+ 1)−0.5

]
= (0.25)Γ(0.25)

Γ(0.75)(1)−0.25 − 0 = (0.25)Γ(0.25) < 1.

Thus, all the assumptions of Theorem 3.5 hold and hence the initial value problem
(3.6)–(3.7) has a unique solution in l∞.

Remark 3.8. In Theorem 3.5, conditions (L1), (A1) and (A2) are seem to be artificial
in nature or motivated towards some special set of functions. Consequently, these
conditions are not applicable for all classes of fractional nabla difference equations. To
fix this problem, we use a different norm to establish global existence and uniqueness
of solutions of initial value problems (1.4)–(1.5) and (1.6)–(1.7).

Theorem 3.9. Assume that conditions (L2) and (B1) hold. Then there exists a
unique solution for the initial value problems (1.4)–(1.5) and (1.6)–(1.7) in l∞h .

Proof. We use the contraction mapping principle (Theorem 3.2) to establish global
existence and uniqueness of solutions of the initial value problems (1.4)–(1.5) and
(1.6)–(1.7) in l∞h . We know that l∞h is a complete metric space with respect to the
weighted sup-metric defined by

ρ(u,v) = sup
t∈N0

1
h(t)‖u(t)− v(t)‖,
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for each pair u, v ∈ l∞h . First, we prove that P ′ maps l∞h into l∞h . Let u ∈ l∞h . Using
Lemma 2.3, Theorem 2.7, Lemma 2.11, (L2) and (B1), we have

‖P ′u‖h = sup
t∈N0

[‖(P ′u)(t)‖
h(t)

]

≤ sup
t∈N0

1
h(t)

[
‖c‖+ 1

Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,u(s))‖
]

= sup
t∈N0

1
h(t)

[
‖c‖+ 1

Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,u(s))− f(s,0) + f(s,0)‖
]

≤ sup
t∈N0

1
h(t)

[
‖c‖+ 1

Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,u(s))− f(s,0)‖

+ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,0)‖
]

= sup
t∈N0

1
h(t)‖c‖+ sup

t∈N0

1
h(t)

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,u(s))− f(s,0)‖
]

+ sup
t∈N0

1
h(t)

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,0)‖
]

≤ ‖c‖h +K sup
t∈N0

1
h(t)

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1h(s)‖u(s)‖
h(s)

]

+ sup
t∈N0

1
h(t)

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1h(s)‖f(s,0)‖
h(s)

]

≤ ‖c‖h +
[
K‖u‖h + ‖f‖h

]
sup
t∈N0

1
h(t)

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1h(s)
]

= ‖c‖h +
[
K‖u‖h + ‖f‖h

]
sup
t∈N0

1
h(t)∇

−α
0 [h(t)]

= ‖c‖h +
[
K‖u‖h + ‖f‖h

]
sup
t∈N0

1
λh(t)

[
h(t)− 1

]
= ‖c‖h + 1

λ

[
K‖u‖h + ‖f‖h

]
sup
t∈N0

[
1− 1

h(t)

]
= ‖c‖h + 1

λ

[
K‖u‖h + ‖f‖h

]
<∞,
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which implies that P ′u ∈ l∞h . For all u, v ∈ l∞h , using Lemma 2.3, Theorem 2.7,
Lemma 2.11 and (L2), we have

‖P ′u− P ′v‖h = sup
t∈N0

[‖(P ′u)(t)− (P ′v)(t)‖
h(t)

]
≤ sup
t∈N0

1
h(t)

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,u(s))− f(s,v(s))‖
]

≤ K sup
t∈N0

1
h(t)

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖u(s)− v(s)‖
]

= K sup
t∈N0

1
h(t)

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1h(s)‖u(s)− v(s)‖
h(s)

]
≤ K‖u− v‖h sup

t∈N0

1
h(t)

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1h(s)
]

= K‖u− v‖h sup
t∈N0

1
h(t)∇

−α
0 [h(t)]

= K‖u− v‖h sup
t∈N0

1
λh(t)

[
h(t)− 1

]
= K

λ
‖u− v‖h sup

t∈N0

[
1− 1

h(t)

]
= K

λ
‖u− v‖h.

Since K < λ, P ′ is contractive. Hence, by Theorem 3.2, there is one and only one
point u ∈ l∞h with P ′u = u. Similarly, we can prove that there is one and only one
point u ∈ l∞h with Pu = u. Hence the proof.

Corollary 3.10 (The autonomous case). If f is constant with respect to its first
argument and let (L2) and (B1) hold, then there exists a unique solution of the initial
value problems (1.4)–(1.5) and (1.6)–(1.7) in l∞h .

The following examples demonstrate the applicability of Corollary 3.10.

Example 3.11. Let a ∈ R. Consider the scalar initial value problem

∇α−1u = au, 0 < α < 1, t ∈ N1, (3.8)(
∇−(1−α)
−1 u

)
(t)
∣∣∣
t=0

= u(0) = c. (3.9)

We have f(u) = au is continuous. For any u, v ∈ R,

|f(u)− f(v)| ≤ |a||u− v|.

Here K = |a| ≥ 0. We choose a suitable λ ∈ (0, 1) such that K < λ < 1. Thus, all the
assumptions of Corollary 3.10 hold and hence the initial value problem (3.8)–(3.9)
has a unique solution in l∞h .
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Remark 3.12. Atici and Eloe obtained in [8] the unique solution of (3.8)–(3.9) as
the exponential function defined by

êα,α(a, tα) = (1− a)
∞∑
k=0

ak(t+ 1)(k+1)α−1

Γ((k + 1)α) , |a| < 1,

which justifies our established results.
Example 3.13. Let a ∈ R. Consider the scalar initial value problem

∇α0∗u = au, 0 < α < 1, t ∈ N1, (3.10)
u(0) = c. (3.11)

We have f(u) = au is continuous. For any u, v ∈ R,

|f(u)− f(v)| ≤ |a||u− v|.

Here K = |a| ≥ 0. We choose a suitable λ ∈ (0, 1) such that K < λ < 1. Thus, all the
assumptions of Corollary 3.10 hold and hence the initial value problem (3.10)–(3.11)
has a unique solution in l∞h .
Remark 3.14. Atsushi Nagai has obtained in [22] the unique solution of (3.10)–(3.11)
as the one parameter discrete Mittag-Leffler function Fα(a, t) which justifies our es-
tablished results.
Example 3.15. Consider the scalar initial value problem

∇0.5
0∗ u = (0.5) sin u, t ∈ N1, (3.12)

u(0) = c. (3.13)

We have f(u) = (0.5) sin u is continuous. For any u, v ∈ R,

|f(u)− f(v)| ≤ (0.5)|u− v|.

Here K = 0.5 > 0. We choose a suitable λ ∈ (0, 1) such that K < λ. For example,
λ = 0.75. Thus, all the assumptions of Corollary 3.10 hold and hence the initial value
problem (3.12)–(3.13) has a unique solution in l∞h .

3.4. DEPENDENCE OF SOLUTIONS

In (1.4)–(1.5) and (1.6)–(1.7), the initial value c may be subject to some errors either
by necessity or for convenience. Hence, it is important to know how the solution
changes when the initial conditions are slightly altered. We shall discuss this question
quantitatively in the following theorems.
Theorem 3.16. Assume that conditions (C), (L1), (A1) and (A2) hold. Suppose
u and v are the solutions of the initial value problems

∇α−1u = f(t,u),
(
∇−(1−α)
−1 u

)
(t)
∣∣∣
t=0

= u(0) = c, t ∈ N1, (3.14)

∇α−1v = f(t,v),
(
∇−(1−α)
−1 v

)
(t)
∣∣∣
t=0

= v(0) = d, t ∈ N1, (3.15)
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respectively, where 0 < α < 1. Then

‖u− v‖∞ = O(‖c− d‖∞).

Theorem 3.17. Assume that conditions (C), (L1), (A1) and (A2) hold. Suppose
u and v are the solutions of the initial value problems

∇α0∗u = f(t,u), u(0) = c, t ∈ N1, (3.16)
∇α0∗v = f(t,v), v(0) = d, t ∈ N1, (3.17)

respectively, where 0 < α < 1. Then

‖u− v‖∞ = O(‖c− d‖∞).

Theorem 3.18. Assume that conditions (L2) and (B1) hold. Suppose u and v are
the solutions of the initial value problems (3.14) and (3.15), respectively. Then

‖u− v‖h = O(‖c− d‖h).

Proof. Consider

‖u− v‖h = sup
t∈N0

‖u(t)− v(t)‖
h(t)

≤ sup
t∈N0

1
h(t)

[ (t+ 1)α−1

Γ(α) ‖c− d‖

+ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,u(s))− f(s,v(s))‖
]

≤ sup
t∈N0

1
h(t)

[ (1)α−1

Γ(α) ‖c− d‖+ K

Γ(α)

t∑
s=1

(t− ρ(s))α−1‖u(s)− v(s)‖
]

= sup
t∈N0

1
h(t)‖c− d‖+K sup

t∈N0

1
h(t)∇

−α
0 ‖u(t)− v(t)‖

= sup
t∈N0

1
h(t)‖c− d‖+K sup

t∈N0

1
h(t)∇

−α
0

(
h(t)‖u(t)− v(t)‖

h(t)

)
≤ sup
t∈N0

1
h(t)‖c− d‖+K‖u− v‖h sup

t∈N0

1
h(t)∇

−α
0 [h(t)]

= ‖c− d‖h + K

λ
‖u− v‖h.

Then, we have the relation

‖u− v‖h ≤
λ

(λ−K)‖c− d‖h

which implies
‖u− v‖h = O(‖c− d‖h).
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Theorem 3.19. Assume that conditions (L2) and (B1) hold. Suppose u and v are
the solutions of the initial value problems (3.16) and (3.17), respectively. Then

‖u− v‖h = O(‖c− d‖h).

3.5. LOCAL EXISTENCE AND UNIQUENESS

The Banach principle introduced the idea of a unique fixed point of a contractive
map in metric spaces. However, not all maps are contractive for an entire space but
they may be contractive within a small subset usually considered as a ball in a metric
space. Such maps are called locally contractive maps. So locally contractive maps can
be utilized for having fixed points within a ball in a metric space, there exists a local
version of the Banach theorem presented as the following theorem.
Theorem 3.20. Let (X, ρ) be a complete metric space containing an open ball having
center x0 and radius r. Let P : Br(x0) → X be a contractive map with a positive
number a < 1 as the contraction constant. If

ρ(Px0, x0) < (1− a)r,

then P has a unique fixed point in Br(x0).
Theorem 3.21 (The nonautonomous case). Assume that conditions (C), (A1),

(L1’) there exists a nonnegative function a(t) defined on N0 such that, for all
(t,u), (t,v) ∈ D,

‖f(t,u)− f(t,v)‖ ≤ a(t)‖u− v‖, (3.18)
and
(A2’)

sup
t∈N0

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,0)‖
]
<

M

1− L, (3.19)

hold. Let p > 0 and define a set

B∞p (0) =
{

u : ‖u‖∞ < p
}
⊆ l∞,

where
p = M

(1− L)2 .

Then there exists a unique bounded solution of the initial value problems (1.4)–(1.5)
and (1.6)–(1.7) in B∞p (0).
Proof. We use Theorem 3.20 to establish local existence and uniqueness of solutions of
the initial value problems (1.4)–(1.5) and (1.6)–(1.7). Clearly, P ′ maps B∞p (0) into l∞.
We have already proved that P ′ is contractive with contraction constant L < 1. Now
consider

‖P ′0− 0‖ ≤ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,0)‖ < M

1− L = (1− L)p,
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implies ‖P ′0− 0‖∞ < (1−L)p. Hence by Theorem 3.20, P ′ has a unique fixed point
u ∈ B∞p (0). Similarly, we can prove that P has a unique fixed point u ∈ B∞p (0).

Corollary 3.22 (The autonomous case). If f is constant with respect to its first
argument and let (C), (L1’), (A1) and (A2’) hold, then there exists a unique bounded
solution of the initial value problems (1.4)–(1.5) and (1.6)–(1.7) in B∞p (0).

The following example demonstrates the applicability of Theorem 3.21.

Example 3.23. Consider the scalar initial value problem

∇0.5
−1u = (0.25)(t+ 1)−0.75[u2 + 1], t ∈ N1, (3.20)(

∇−0.5
−1 u

)
(t)
∣∣∣
t=0

= u(0) = c. (3.21)

We have f(t, u) = (0.25)(t + 1)−0.75[u2 + 1] is continuous with respect to its second
argument. Let M > 0 be an arbitrary constant. For (t, u), (t, v) ∈ D, consider

|f(t, u)− f(t, v)| = (0.25)(t+ 1)−0.75|u2 − v2|

= (0.25)(t+ 1)−0.75|u− v||u+ v|

≤ (0.25)(t+ 1)−0.75|u− v|[|u|+ |v|]

≤ (0.5)M(t+ 1)−0.75|u− v|,

so that (3.18) holds with a(t) = (0.5)M(t+ 1)−0.75 is a nonnegative function defined
on N0. Now consider

L = sup
t∈N0

[ (0.5)M
Γ(0.5)

t∑
s=1

(t− ρ(s))0.5−1(s+ 1)−0.75
]

= (0.5)MΓ(0.25).

We choose M = 0.5 < 1
(0.5)Γ(0.25) so that L < 1 and thus (A1) holds. Also,

sup
t∈N0

[ 1
Γ(0.5)

t∑
s=1

(t− ρ(s))0.5−1|f(s, 0)|
]

= (0.25) sup
t∈N0

[ 1
Γ(0.5)

t∑
s=1

(t− ρ(s))0.5−1(s+ 1)−0.75
]

= (0.25)Γ(0.25) < M

1− L,

and thus (3.19) holds. Thus, all the assumptions of Theorem 3.21 are satisfied and
hence the initial value problem (3.20)–(3.21) has a unique bounded solution in an
open ball having center 0 and radius p = 57.

Remark 3.24. The problem in the previous example does not satisfy (L1) in the
global sense and thus Theorem 3.5 does not apply.
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Theorem 3.25. Assume that the following conditions hold:

(L2’) f is Lipschitz continuous with respect to its second argument on D with Lipschitz
constant K, i.e. there exists a nonnegative constant K ∈ [0, λ) such that, for all
(t,u), (t,v) ∈ D,

‖f(t,u)− f(t,v)‖ ≤ K‖u− v‖, (3.22)

(B1’)

‖f‖h = sup
t∈N0

‖f(t,0)‖
h(t) <

M

λ−K
. (3.23)

Let q > 0 and define a set

Bhq (0) =
{

u : ‖u‖h < q
}
⊆ l∞h ,

where
q = M

(λ−K)2 .

Then there exists a unique bounded solution for the initial value problems (1.4)–(1.5)
and (1.6)–(1.7) in Bhq (0).

Proof. We use Theorem 3.20 to establish the local existence and uniqueness of solu-
tions of the initial value problems (1.4)–(1.5) and (1.6)–(1.7). Clearly P ′ maps Bhq (0)
into l∞h . We have already proved that P ′ is contractive with contraction constant
K
λ < 1. Now consider

‖P ′0− 0‖h = sup
t∈N0

‖P ′0− 0‖
h(t) = sup

t∈N0

1
h(t)

∥∥∥ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1f(s,0)
∥∥∥

≤ sup
t∈N0

1
h(t)

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1‖f(s,0)‖
]

= sup
t∈N0

1
h(t)

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1h(s)‖f(s,0)‖
h(s)

]
≤ ‖f‖h sup

t∈N0

1
h(t)

[ 1
Γ(α)

t∑
s=1

(t− ρ(s))α−1h(s)
]

= ‖f‖h sup
t∈N0

1
h(t)

[
∇−α0 h(t)

]
<

M

λ−K
sup
t∈N0

1
λh(t)

[
h(t)− 1

]
= M

λ(λ−K) sup
t∈N0

[
1− 1

h(t)

]
=
(

1− K

λ

)
q.

Hence, by Theorem 3.20, P ′ has a unique fixed point u ∈ Bhq (0). Similarly, we can
prove that P has a unique fixed point u ∈ Bhq (0). Hence the proof is complete.
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Corollary 3.26 (The autonomous case). If f is constant with respect to its first
argument and let (L2’) and (B1’) hold, then there exists a unique bounded solution of
the initial value problems (1.4)–(1.5) and (1.6)–(1.7) in Bhq (0).

The following example demonstrates the applicability of Corollary 3.26.

Example 3.27. Consider the scalar initial value problem

∇0.5
0∗ u = (0.25)u2 + 1, t ∈ N1, (3.24)

u(0) = c. (3.25)

We have f(u) = (0.25)u2 + 1 is continuous. Let M > 0 be an arbitrary constant. For
(t, u), (t, v) ∈ D, consider

|f(u)− f(v)| = (0.25)|u2 − v2| = (0.25)|u− v||u+ v|
≤ (0.25)|u− v|(|u|+ |v|) ≤ (0.5)M |u− v|.

Here K = (0.5)M . Let λ = 0.75. We choose M = 1 < λ
(0.5) so that K < λ implies

(3.22) holds. Now consider

‖f‖h = sup
t∈N0

‖f(0)‖
h(t) = sup

t∈N0

1
h(t) = 1 < M

λ−K
,

and thus (3.23) holds. Thus, all the assumptions of Corollary 3.26 are satisfied and
hence the initial value problem (3.24)–(3.25) has a unique bounded solution in an
open ball having center 0 and radius q = 16.

Remark 3.28. Note that the problem in the previous example does not satisfy (L2)
in the global sense and thus Corollary 3.10 does not apply.

4. APPLICATIONS

In this section we investigate existence and uniqueness of solutions of initial value
problems associated with logistic, prey - predator and SIR epidemic models using the
conditions established in Section 3.

Discrete Fractional Order Logistic Model: Let 0 < α < 1, r > 0 and c > 0.
Consider the initial value problem of the discrete fractional order logistic equation

∇α0∗u = ru[1− u], t ∈ N1, (4.1)
u(0) = c. (4.2)

Here f(u) = ru[1 − u] is continuous. Let M > 0 be an arbitrary constant. For |u|,
|v| ≤M , consider

|f(u)− f(v)| = r|[u− v]− [u2 − v2]| = r|u− v||1− [u+ v]|
≤ r|u− v|[1 + |u|+ |v|] ≤ r(1 + 2M)|u− v|.
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Here K = r(1+2M) > 0 and chooseM < λ−r
2r so that K < λ. Clearly 0 < r < λ < 1.

Also,

sup
t∈N0

‖f(0)‖
h(t) = 0 < M

λ−K
.

Thus the initial value problem (4.1)–(4.2) has a unique bounded solution in Bhq (0).
For example, if we take r = 0.5, λ = 0.75 and choose M = 0.2 < λ−r

2r , then the initial
value problem (4.1)–(4.2) has a unique bounded solution in an open ball having center
0 and radius q = 80.

Discrete Fractional Order Lotka-Volterra Predator – Prey Model: Let P (t)
and Q(t) denote prey and predator populations at time t, respectively; α, a, b, c and d
are positive constants such that 0 < α < 1. Under the standard assumptions, consider
the initial value problem of the discrete fractional order Lotka-Volterra predator - prey
model

∇α∗P = P (a− bQ), t ∈ N1, (4.3)
∇α∗Q = Q(cP − d), t ∈ N1, (4.4)
P (0) = P0 and Q(0) = Q0. (4.5)

The initial value problem (4.3)–(4.5) can be written in the form

∇α∗u = f(t,u), t ∈ N1,

u(0) = u0,

where

u = (P, Q), f = (aP − bPQ, cPQ− dQ) and u0 = (P (0), Q(0)).

Let M > 0 be an arbitrary constant. Clearly, f is continuously differentiable on D.
We have ‖u‖ =

√
P 2 +Q2 ≤M implies |P |, |Q| ≤M . Consider,∥∥∥ ∂f

∂P

∥∥∥ = ‖(a− bQ, cQ)‖ =
√

(a− bQ)2 + (cQ)2 ≤ a+ (b+ c)M,

and ∥∥∥ ∂f
∂Q

∥∥∥ = ‖(−bP, cP − d)‖ =
√

(−bP )2 + (cP − d)2 ≤ d+ (b+ c)M.

Let K = max{a+ (b+ c)M,d+ (b+ c)M}. Then,∥∥∥ ∂f
∂P

∥∥∥ ≤ K and
∥∥∥ ∂f
∂Q

∥∥∥ ≤ K
and hence from Theorem 3.4, we get

‖f(t,u)− f(t,v)‖ ≤ K‖u− v‖.



Solutions of fractional nabla difference equations – existence and uniqueness 235

Choose
M < min

{λ− a
b+ c

,
λ− d
b+ c

}
so that K < λ.

Clearly 0 < a, d < λ < 1. Also,

sup
t∈N0

‖f(0)‖
h(t) = 0 < M

λ−K
.

Thus the initial value problem (4.3)–(4.5) has unique bounded solution in Bhq (0).
For example, if we take a = 0.1, b = 2, c = 3, d = 0.4, λ = 0.75 and choose
M = 0.06 < min{0.13, 0.07} so that K = max{0.4, 0.7} = 0.7 < λ. Then the initial
value problem (4.3)–(4.5) has a unique bounded solution in an open ball having center
0 and radius q = 24.

Discrete Fractional Order SIR Epidemic Model: Let S(t), I(t) and R(t) de-
note susceptible, infective and recovered populations at time t, respectively; N is the
total population present in the system; α, β and γ are positive constants such that
0 < α < 1. Under the standard assumptions, consider the initial value problem of the
discrete fractional order SIR epidemic model without vital dynamics

∇α∗S = −βIS, t ∈ N1, (4.6)
∇α∗ I = βIS − γI, t ∈ N1, (4.7)
∇α∗R = γI, t ∈ N1, (4.8)
S(0) = S0, I(0) = I0 and R(0) = R0, (4.9)

such that
N = S(t) + I(t) +R(t).

The initial value problem (4.6)–(4.9) can be written in the form

∇α∗u = f(t,u), t ∈ N1,

u(0) = u0,

where

u = (S, I, R), f = (−βIS, βIS − γI, γI) and u0 = (S(0), I(0), R(0)).

Let M > 0 be an arbitrary constant. Clearly, f is continuously differentiable on D.
We have ‖u‖ =

√
S2 + I2 +R2 ≤M implies |P |, |Q|, |R| ≤M . Consider,∥∥∥ ∂f
∂S

∥∥∥ = ‖(−βI, βI, 0)‖ =
√

(−βI)2 + (βI)2 ≤
√

2βM,

∥∥∥∂f
∂I

∥∥∥ = ‖(−βS, βS − γ, γ)‖ =
√

(−βS)2 + (βS − γ)2 + γ2 ≤
√

2(βM + γ),

and ∥∥∥ ∂f
∂R

∥∥∥ = ‖(0, 0, 0)‖ = 0.
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Let K = max{
√

2βM,
√

2(βM + γ), 0} =
√

2(βM + γ). Then,∥∥∥ ∂f
∂S

∥∥∥ ≤ K, ∥∥∥∂f
∂I

∥∥∥ ≤ K and
∥∥∥ ∂f
∂R

∥∥∥ ≤ K
and hence from Theorem 3.4, we get

‖f(t,u)− f(t,v)‖ ≤ K‖u− v‖.

Choose M < λ−
√

2γ√
2β so that K < λ. Clearly 0 <

√
2γ < λ < 1. Also,

sup
t∈N0

‖f(0)‖
h(t) = 0 < M

λ−K
.

Thus the initial value problem (4.6)–(4.9) has a unique bounded solution in Bhq (0).
For example, if we take β = 2, γ = 0.4, λ = 0.75 and choose M = 0.06 < λ−

√
2γ√

2β
so that K = 0.7354 < λ. Then the initial value problem (4.6)–(4.9) has a unique
bounded solution in an open ball having center 0 and radius q = 281.
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