PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aminopeptydazy pozyskane z roślin o dużym znaczeniu ekonomicznym – rola i charakterystyka

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Aminopeptidases isolated from plants of great economic value – role and characteristics
Języki publikacji
PL EN
Abstrakty
PL
Aminopeptydazy należą do enzymów z grupy hydrolaz, odpowiedzialnych za odszczepienie N-końcowych reszt aminokwasowych z łańcucha peptydowego. Enzymy te występują powszechnie w wielu organizmach żywych i pełnią ważne role w licznych procesach fizjologicznych (przemianie białek, kiełkowaniu, procesach obronnych czy mejozie). Roślinne aminopeptydazy znajdują zastosowanie przy produkcji hydrolizatów białkowych, mogą także stanowić cel molekularny herbicydów. Niniejsza publikacja jest przeglądem literatury dotyczącej charakterystyki i roli fizjologicznej aminopeptydaz występujących w kilku wybranych gatunkach roślin. Szczególną uwagę poświęcono roślinom o dużym znaczeniu ekonomicznym, takim jak zboża, rodzina roślin psiankowatych czy wybrane warzywa, w których ekspresja niektórych aminopeptydaz jest indukowana przez czynniki szkodliwe.
EN
Aminopeptidases are members of hydrolases, the group of enzymes that cleave N-terminal residues from peptide chain. These enzymes are widely distributed in many living organisms, and they play crucial role in several physiological processes (protein turnover, germination, defense processes and meiosis). Plant aminopeptidases are used in production of protein hydrolysates and may also serve as molecular target for herbicides. This publication is a review of the literature concerning the characteristics and physiological role of aminopeptidases found in selected plant species. Special attention has been given to the plants of great economic value such as cereals, nightshades family and selected vegetables in which expression of some aminopeptidases is induced by various harmful factors.
Słowa kluczowe
Czasopismo
Rocznik
Strony
463--468
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
autor
  • Katedra Chemii Organicznej, Bioorganicznej i Biotechnologii, Wydział Chemiczny, Politechnika Śląska, Gliwice
autor
  • Katedra Chemii Organicznej, Bioorganicznej i Biotechnologii, Wydział Chemiczny, Politechnika Śląska, Gliwice
Bibliografia
  • 1. Waditee-Sirisattha R., Hattori A., Shibato J., Rakwal R., Sirisattha S., Takabe T., Tsujimoto M.: Role of the Arabidopsis leucine aminopeptidase 2. Plant Signal. Behav. 2011, 6, 1581–1583.
  • 2. Waditee-Sirisattha R., Shibato J., Rakwal R., Sirisattha S., Hattori A., Nakano T., Takabe T., Tsujimoto M.: The Arabidopsis aminopeptidase LAP2 regulates plant growth, leaf longevity and stress response. New Phytol. 2011, 191, 958–969.
  • 3. Bartling D., Weiler E.: Leucine aminopeptidase from Arabidopsis thaliana. Molecular evidence for a phylogenetically conserved enzyme of protein turnover in higher plants. Eur. J. Biochem. 1992, 205, 425–431.
  • 4. Gettys K., Hancoc J., Cavalieri A.: Salt tolerance of in vitro activity of leucine aminopeptidse, peroxidase nad malate dehydrogrnaze in the halophytes Spartina alterniflora and S. patens. Bot. Gaz. 1980, 141, 453–457.
  • 5. Premarathne A., Leung D.: Characterization of activity of a potential foodgrade leucine aminopeptidase from kiwifruit, Enzyme Research, 2010, No pp. given.
  • 6. Lomate P., Hivrale, V.: Induction of leucine aminopeptidase (LAP) like activity with wounding and methyl jasmonate in pigeonpea (Cajanas cajan) suggests the role of these enzymes in plant defense in leguminosae. Plant Psychol. Bioch. 2011, 49, 609–616.
  • 7. Wilson H.: Genetic control and distribution of leucine aminopeptidase in the cultivated Chenopods (Chenopodium) and related weed taxa. Biochem Genet. 1976, 14, 913–919.
  • 8. Scranton M., Yee A., Park S., Walling L.: Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage. J. Biol. Chem. 2012, 287, 18408–18417.
  • 9. Gu Y., Holzer F., Walling L.: Overexpression, purification and biochemical characterization of the wound-induced leucine aminopeptidase of tomato. Eur. J. Biochem. 1999, 263, 726–735.
  • 10. Herbers K., Prat S., Willmitzer L.: Functional analysis of a leucine aminopeptidase from Solanum tuberosum L. Planta 1994, 194, 230–240.
  • 11. Marinova M., Thi Kim Cun N., Tchorbanov, B.: Enzymatic hydrolysis of soy protein isolate by food grade proteinases and aminopeptidases of plant origin. Biotechnol. & Biotechnol. 2008, 22, 835–838.
  • 12. Sopanen T., Mikola J.: Purification and partial characterization of barley leucine aminopeptidase. Plant Physiol. 1975, 55, 809–814.
  • 13. Doi H., Kawakami M.: Purification of aminopeptidase from Australian classified barley flour. Int. J. Biochem. Cell. Biol. 1997, 29, 345–352.
  • 14. Ogiwara N., Amano T., Satoh M., Shioi Y.: Leucine aminopeptidase from etiolated barley seedlings: characterization and partial purification of isoforms. Plant Sci. 2005, 168, 575–581.
  • 15. Strelec I., Vukeli B., Vitale L.: Aminopeptidases of germinated and non-germinated barley. Food Technol. Biotechnol. 2009, 47, 296–303.
  • 16. Jeong H., Shin J., Ok S.: Barley DNA-binding methionine aminopeptidase, which changes the localization from the nucleus to the cytoplasm by low temperature, is involved in freezing tolerance. Plant Sci. 2011, 180, 53–60.
  • 17. Oszywa B., Makowski M., Pawełczak M.: Purification and partial characterization of aminopeptidase from barley (Hordeum vulgare L.) seeds. Plant Physiol. Bioch. 2013, 65, 75–80.
  • 18. Casano L., Desimone M., Trippi V.: Proteolytic Activity at Alkaline pH in Oat Leaves, Isolation of an Aminopeptidase. Plant Physiol. 1989, 91, 1414–1418.
  • 19. Gajda A., Pawełczak M., Drag M.: Substrate specificity screening of oat (Avena sativa) seeds aminopeptidase demonstrate unusually broad tolerance in S1 pocket. Plant Psychol. Bioch. 2012, 54, 6–9.
  • 20. Szawlowska U., Zdunek-Zastocka E., Bielawski W.: Biochemical characterisation of prolyl aminopeptidase from shoots of triticale seedlings and its activity changes in response to suboptimal growth conditions. Plant Psychol. Bioch. 2011, 49, 1342–1349.
  • 21. Szawlowska U., Grabowska A., Zdunek-Zastocka E., Bielawski, W.: TsPAPI encodes a novel plant prolyl aminopeptidase whose expression is induced in response to suboptimal growth conditions. Biochem. Biophys. Res. Commun. 2012, 419, 104–109.
  • 22. Beckman L., Scandalios J., Brewbacker J.: Genetics of leucine aminopeptidase isozymes in maize. Genetics 1964, 50, 899–904.
  • 23. Scandalios J.: Leucine aminpeptidase isozymes in maize development. J. Hered. 1975, 56, 177–180.
  • 24. Duprez K., Scranton M., Walling L., Fana, L.: Structure of tomato wound-induced leucine aminopeptidase sheds light on substrate specificity. Acta Cryst. 2014, 70, 1649–1658.
  • 25. Gu Y., Pautot V., Holzer F., Walling L.: A complex array of proteins related to the multimeric leucine aminopeptidase of Tomato. Plant Physiol. 1996, 110, 1257–1266.
  • 26. Chao W., Pautot V., Holzer F., Walling L.: Leucine aminopeptidases: the ubiquity of LAP-N and the specificity of LAP-A. Planta 2000, 210, 563–573
  • 27. Tu C., Park S., Walling L.: Isolation and characterization of the natural leucine aminopeptidase (LapN) of tmatao. Plat Physiol. 2003, 132, 243–255.
  • 28. Gu Y., Walling L.: Specifity of the wound-inducted leucine aminopeptidase (LAP- A) of tomato, activity on dipeptide and tripeptide substrates. Eur. J. Biochem. 2000, 267, 1178–1187.
  • 29. Hartl M., Merker H., Schmidt D., Baldwin I. Optimized virus-induced gene silencing in Solanum nigrum reveals the defensive function of leucine aminopeptidase against herbivores and the shortcomings of empty vector controls. New. Phytol. 2008, 179, 356–365.
  • 30. Narváez-Vásquez J., Tu C., Park S., Walling L.: Targeting and localization of wound-inducible leucine aminopeptidase A in tomato leaves. Planta, 2008, 227, 341–351
  • 31. Fowler J., Narváez-Vásquez J., Aromdee D., Pautot V., Holzer F., Walling L.: Leucine aminopeptidase regulates defense wound signaling in tomato downstream of jasmonic acid. Plant Cell, 2009, 21, 1239–1251.
  • 32. Clarence A., Pearce R., Pearce G. Systemins: A functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc. Natl. Acad. Sci. USA 2003, 100, 14577–14580.
  • 33. Manaa A., Ahmed H., Valot B., Bouchet J., Aschi-Smiti S., Causseand M., Faurobert M.: Salt and genotype impact on plant physiology and root proteome variations in tomato. J. Exp. Bot. 2011, 62, 2797–2813.
  • 34. Patout V., Holzer F., Reisch B., Walling L.: Leucine aminopeptidase: An inducible component of the defense response in Lycopersicon escuentum (tomato). Proc. Natl. Acad. Sci. USA 1993, 90, 9906–9910.
  • 35. Boulila-Zoghlami L., Gallusci P., Holzer F., Basset G., Hjebali W., Chaibi W., Walling L., Brouquisse R.: Up-regulation of leucine aminopeptidase-A in cadmium-treated tomato roots. Planta 2011, 234, 857–863.
  • 36. Pautot V., Holzer F., Chaufaux J., Walling L.: The induction of tomato leucine aminopeptidase genes (LAPA) after Pseudomonas syringae pv. tomato infection is primarily a wound response triggered by coronatine. Mol. Plant Microbe In. 2001, 14, 214–224.
  • 37. Abdala A., Takeda L., Freitas J., Alves K.: Phaseolus vulgaris seed aminopeptidase Purification and partial characterization of Phaseolus vulgaris seed aminopeptidase. Braz. J. Med. Biol. Res. 1999, 32, 1489–1492.
  • 38. Citharel J., Garreau C.: Aminopeptidase from the cotyledons of vicia faba l. var. minor seeds: partial purification and some properties. New Phytol. 1987, 107, 499–506.
  • 39. Yamauchi Y., Ejiri Y., Tanaka K.: Purification of an aminopeptidase preferentially releasing N-terminal alanine from cucumber leaves and its identification as a plant aminopeptidase N. Biosci. Biotechnol. Biochem. 2001, 65, 2802–2805.
  • 40. Hegedus I., Vojtassak J., Bilisics L., Borovkov N., Siekel P.: Activity of some aminopeptidases in immobilized cells of Daucus carota. Biologia Plantarum, 2000, 43, 462–466.
  • 41. Asano M., Nakamura N., Kawai M., Miwa T., Nio N.: Purification and characterization of an N-terminal Acidic Amino Acid- Specific aminopeptidase from soybean cotyledons (Glycine max). Biosci. Biotechnol. Biochem. 2010, 74, 113–118.
  • 42. Lomate P., Hivrale, V.: Induction of leucine aminopeptidase (LAP) like activity with wounding and methyl jasmonate in pigeonpea (Cajanas cajan) suggests the role of these enzymes in plant defense in leguminosae. Plant Psychol. Bioch. 2011, 49, 609–616.
  • 43. Lomate P., Hivrale V.: Changes and induction of aminopeptidase activities in response to pathogen infection during germination of pigeonpea (Cajanas cajan) seeds. J. Plant Physiol. 2011, 168, 1735–1742.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67dc2861-c444-4b30-8643-e1dff09eda1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.