Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Odzyskiwanie jonów srebra i złota z roztworów z wykorzystaniem biomasy Spirulina platensis
Języki publikacji
Abstrakty
In order to assess ability of Spirulina platensis to recover silver and gold ions from the environment the bioaccumulation of silver and gold ions and their effect on growth, proteins and carbohydrates content of Spirulina platensis biomass was studied. Silver nitrate (AgNO3) in concentration range 0.01-1 mg/dm3 and tetrachloroaurate Na[AuCl4] in concentration range 18.5-370 mg/dm3 were added as component of the Spirulina platensis cultivation medium. In case of silver two cultivation media were studied: standard and Cl-free. The process of silver and gold uptake was traced using neutron activation analysis. Presence of silver ions in standard cultivation medium reduced biomass productivity by 66 %, while in Cl-free biomass productivity was reduced by 11.8 % only. The reduction of proteins content by 30 % in Cl-free medium and by 19 % in standard medium was also observed. The experiments showed that in case of gold ions loading, the biomass productivity and protein content were reduced only at high Na[AuCl4] concentration in the medium. The behaviour of carbohydrates content change was similar under silver and gold loadings: decrease at low metal concentration followed by increase at high metal concentrations. Scanning electron microscopy allowed observation of spherical metal nanoparticles, which were formed extracellularly during silver and gold bioaccumulation. Spirulina platensis can be used for recovery of precious metals as well as metal nanoparticles production.
Czasopismo
Rocznik
Tom
Strony
229--240
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
- Institute of Microbiology and Biotechnology, Academiei Str. 1, 2028 Chisinau, R. Moldova
- University of Academy of Sciences of Moldova, Academiei Str. 3/1, 2028 Chisinau, R. Moldova
autor
- Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 1419890 Dubna, Russia
- Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Reactorului Str. 30, MG-6, Bucharest - Magurele, Romania
autor
- Institute of Microbiology and Biotechnology, Academiei Str. 1, 2028 Chisinau, R. Moldova
autor
- Institute of Microbiology and Biotechnology, Academiei Str. 1, 2028 Chisinau, R. Moldova
autor
- Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 1419890 Dubna, Russia
autor
- Institute of Microbiology and Biotechnology, Academiei Str. 1, 2028 Chisinau, R. Moldova
Bibliografia
- [1] He J, Kappler A. Recovery of precious metals from waste streams. Microb Biotechnol. 2017;10:1194-1198. DOI: 10.1111/1751-7915.12759.
- [2] Dominguez-Benetton X, Varia JC, Pozo G, Modin O, Ter Heijne A, Fransaer J, et al. Metal recovery by microbial electro-metallurgy. Prog Mater Sci. 2018;94:435-461. DOI: 10.1016/j.pmatsci.2018.01.007.
- [3] Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S. Biomining: metal recovery from ores with microorganisms. Adv Biochem Eng Biotechnol. 2014;141:1-47. DOI: 10.1007/10_2013_216.
- [4] Chojnacka K. Biosorption and bioaccumulation - the prospects for practical applications. Environ Int. 2010;36:299-307. DOI: 10.1016/j.envint.2009.12.001.
- [5] Zinicovscaia I, Safonov A, Tregubova V, Ilin V, Cepoi L, Chiriac T, et al. Biosorption and bioaccumulation of lanthanum, chromium, vanadium and uranium from single and multi-component batch systems by Arthrospira (spirulina) platensis biomass. Ecol Chem Eng S. 2016;23:401-412. DOI: 10.1515/eces-2016-0028.
- [6] Zinicovscaia I, Safonov A, Tregubova V, Ilin V, Frontasyeva MV, Demina L. Bioaccumulation and biosorption of some selected metals by bacteria Pseudomonas putida from single- and multi-component systems. Desalin Water Treat. 2017;74:149-154. DOI: 10.5004/dwt.2017.20732.
- [7] Govindaraju K, Basha SK, Kumar VG, Singaravelu G. Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci. 2008;43:5115-5122. DOI: 10.1007/s10853-008-2745-4.
- [8] Correa-Llantén DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM. Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from deception Island, Antarctica. Microb Cell Fact. 2013;12:75. DOI: 10.1186/1475-2859-12-75.
- [9] Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol. 2006;40:6304-6309. DOI: 10.1021/es061040r.
- [10] Solisio C, Lodi A, Soletto D, Converti A. Cadmium biosorption on Spirulina platensis biomass. Bioresour Technol. 2008;99:5933-5937. DOI: 10.1016/j.biortech.2007.11.002.
- [11] Arunakumara KKIU, Zhang X, Song X. Bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of Spirulina (Arthrospira) platensis. J Ocean Univ China. 2008;7:397-403. DOI: 10.1007/s11802-008-0397-2.
- [12] Frontasyeva MV. Neutron activation analysis in the life sciences. A review. PEPAN. 2011;42:332-378. DOI: 10.1134/S1063779611020043.
- [13] Pavlov SS, Dmitriev AYu, Frontasyeva MV. Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia. J Radioanalyt Nuclear Chem. 2016;309:27-38. DOI: 10.1007/s10967-016-4864-8.
- [14] Ghandour W, Hubbard JA, Deistung J, Hughes MN, Poole RK. The uptake of silver ions by Escherichia coli K12: Toxic effects and interaction with copper ions. Appl Microbiol Biotechnol. 1988;28:559-565. DOI: 10.1007/BF00250412.
- [15] Slawson RM, Van Dyke MI, Lee H, Trevors JT. Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid. 1992;27:72-79. DOI: 10.1016/0147-619X(92)90008-X.
- [16] Erickson RJ, Brooke LT, Kahl MD, Venter FV, Harting SL, Arkee TPM, et al. Effects of laboratory test conditions on the toxicity of silver to aquatic organisms. Environ Toxicol Chem. 1998;17:572-578. DOI: 10.1002/etc.5620170407.
- [17] Reinfelder JR, Sung IC. Speciation and microalgal bioavailability of inorganic silver. Environ Sci Technol. 1999;33:1860-1863. DOI: 10.1021/es980896w.
- [18] Fortin C, Campbell PGC. Silver uptake by the green alga Chlamydomonas reinhardtii in relation to chemical speciation: influence of chloride. Environ Toxicol Chem. 2000;19:2769-2778. DOI: 10.1002/etc.5620191123.
- [19] Cepoi L, Rudi L, Chiriac T, Valuta A, Zinicovscaia I, Duca G, et al. Biochemical changes in cyanobacteria during the synthesis of silver nanoparticles. Canad J Microbiol. 2015;61:13-21. DOI: 10.1139/cjm-2014-0450.
- [20] Tsibakhashvili NY, Kirkesali EI, Gintury E, Pataraya D, Gurielidze M, Kalabegishvili T, et al. Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Adv Sci Let. 2011;4:3408-3417. DOI: 10.1166/asl.2011.1915.
- [21] Li X, Xu H, Chen ZS, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011; 1-16. DOI: 10.1155/2011/270974.
- [22] Kalishwarala K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett. 2008;62:4411-4413. DOI: 10.1016/j.matlet.2008.06.051.
- [23] Savvaidis I. Recovery of gold from thiourea solutions using microorganisms. Biometals. 1998;11:145-51. DOI: 10.1023/A:1009234113485.
- [24] Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, et al. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci USA. 2009;106:17757-17762. DOI: 10.1073/pnas.0904583106.
- [25] Lengke MF, Southam G. The Effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex. Geochim Cosmochim Acta. 2005;69:3759-3772. DOI: 10.1016/j.gca.2005.03.012.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67dc1fbf-9a86-41b8-8053-ddd0ae2d5e0c