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Abstract. The paper concerns the problem of the influence of thermal actions on the struc-

tural behavior of sandwich panels with unspecified elastic supports. An ordinary sandwich 

panel theory is used. The boundary conditions have the arbitrary form of elastic supports. 

The solution of a statically undetermined system with limitations of horizontal displace-

ment and rotation is derived. The illustrative examples are presented and the problem 

solution is discussed. 
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Introduction 

Due to their specific structure, sandwich panels have good load capacity at low 

deadweight and excellent thermal insulation. The separation of rigid faces by the 

thick and light core results in the significant role of thermal actions. These actions 

bring on displacements, strains and stresses in the structure. This applies in particu-

lar to the statically undetermined systems. The influence of thermal actions in this 

case is usually greater than other impacts. 

In the generally accepted theory [1-3], the behavior of the sandwich beam can 

be described by ordinary differential equations and relatively simple boundary 

conditions. In fact, sandwich beams and plates are spatial systems with complex 

support conditions. These conditions are usually different at the upper and lower 

faces of sandwich. For some time there has been discussion on the accuracy of the 

theoretical assumptions concerning the boundary conditions. Many controversies 

surround the effect of admission or restriction of the horizontal displacement of the 

structure. Complex boundary conditions can be taken into account by using higher- 

-order global-local theories [4-6], but their application usually requires sophisticat-

ed computational tools. 

The issue of taking into account appropriate boundary conditions is particularly 

important in the case of thermal actions that have the nature of distortions [7] and 
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reach the extreme values in case of fire. The restraint of the structure deformations 

causes internal forces and stresses [8]. It was shown in [9, 10] that the structural 

response can be very sensitive due to the variation of support conditions. Also 

geometrical shape variations of the structure can have an influence on the load 

capacity and displacements of sandwich panels [11]. 

The paper presents the proposal of a refined classical sandwich beam theory, 

which allows for the easy definition of various boundary conditions. The solution 

of the thermally loaded undetermined system with arbitrary elastic supports is de-

rived. The problem of the restriction of the horizontal displacement of the structure 

is in focus. The parametric studies of the influence of different boundary conditions 

on the internal forces, stresses and deformation of the sandwich structure are pre-

sented and discussed. 

1. Formulation of the problem 

Consider sandwich beam (1D structure) with flat facings and a thick and soft 

core. In the case of the beam subjected to distributed transverse load q and initial 

curvature θ, the classical constitutive equations have the form of two differential 

equations: 

 )( θγ −′′−′⋅= wBM S , (1) 

 γ⋅= CCAGV . (2) 

The curvature θ is induced by the difference T2 – T1 between the temperatures 

in lower and upper sandwich faces. The vertical displacement w, shear strain γ, 

bending moment M and shear force V are functions of the position coordinate x 

(x, z - coordinates, u, w - displacements). The transverse load q and the curvature θ 

can also be functions of x. The GC and AC denote the shear modulus and the cross- 

-sectional area of the core. The term BS represents the bending stiffness of the 

facings with respect to the global center line of the sandwich panel. In the case 

of flat and thin faces BS expresses total bending stiffness. 

The only variable in the classical theory is the position coordinate x. The typical 

boundary conditions refer to vertical displacements, rotations caused by bending 

or internal forces: 

a) simply support - vertical displacement and bending moment at the support 

(point x0) equal to zero: 

 ( ) ( ) ( ) 0,0
000
=′−′′= xxwxw γ , (3) 

b) clamping - vertical displacement and rotation caused by bending equal to zero: 

 ( ) ( ) ( ) 0,0
000
=−′= xxwxw γ , (4) 
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c) free end: 

 ( ) ( ) 0,0
00
=′′=′′′ xwxw . (5) 

The boundary conditions (3)-(5) are idealized. In practice, there are elastic supports, 

which allow the displacements proportional to the forces occurring in the supports. 

This also applies to horizontal displacements. In general, the horizontal support 

conditions for the two sandwich faces tend to be independent and different. 

 

 

Fig. 1. The scheme of the horizontal elastic supports independently imposed on two rigid 

sandwich faces; k1, k2 - modules of support elasticity 

The method of taking into account elastic vertical supports was extensively dis-

cussed in [9]. This paper focuses on the problem of the restriction of the horizontal 

displacement of the structure. The horizontal supporting is assumed as elastic 

(displacement linearly proportional to the force) and independently imposed on two 

rigid sandwich faces. The considered type of the support is schematically shown 

in Figure 1. 

2. The solution of the thermally loaded system with elastic supports 

Consider the symmetric sandwich panel that is in the initial temperature T0. The 

core is not sensitive to temperature change. An increase or decrease in temperature 

causes a linearly proportional expansion or contraction of sandwich faces, respec-

tively. The size of the faces, expansion or contraction determines the thermal 

expansion coefficient α of the material of faces. As a result of thermal effects, the 

temperature of the upper face changed to T1, whereas the lower face temperature 

changed to T2. Any change in temperature can be expressed as the sum of the two 

effects: uniform change ∆TN and uneven change ∆TM :  
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Uniform increase/decrease of temperature in the case of a (thermally) homogene-

ous or symmetrically non-homogeneous structure is responsible for the expan-

sion/contraction ∆L of the structural element of the original length L: 
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Uneven temperature change causes the curvature of the structural element: 

 
e

T
M

∆
=αθ , (9) 

where e denotes the distance between centroids of sandwich faces (see Fig. 2). 

Deformation of the free element subjected to thermal excitation is presented in 

Figure 2. When the deformation of the structure is limited, internal forces appear. 

 

 

Fig. 2. Deformation of the free element subjected to thermal excitation 

 

Fig. 3. The one-span basic system with the restriction of the horizontal displacement:  

a) boundary conditions, b) unknown support forces and displacements 

Consider the one-span basic system presented in Figure 3a with the restriction 

of the horizontal displacement. The structure is symmetric and the sandwich faces 

have the same thickness. The elasticity of the horizontal supports may take any 

value. It is assumed that upper and lower horizontal supports have the elasticity 

coefficients k1 and k2, respectively. The structure is subjected to a temperature 

a) 

b) 
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change - the initial temperature was T0, the current temperature is T1 in the upper 

face and T2 in the lower face. The thermal action and the restriction of the horizon-

tal displacement cause the horizontal support forces H1 and H2 . The support forces, 

as also the internal forces and structure deformations, depend on the geometrical 

and mechanical parameters of the system, thermal actions and support stiffness. 

Unknown horizontal displacements at the upper and lower supports are denoted 

as ∆1 and ∆2, respectively. The unknown forces H1 and H2 can be represented by 

the unknown axial force X1 and bending moment X2 (see Fig. 3b): 
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From the other point of view, the forces H1 and H2 are proportional to the respec-

tive support stiffness k and displacement ∆. The final displacements ∆1, ∆2 depend 

on the forces X1, X2 and temperature changes ∆TN, ∆TM : 
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The following terms denote displacements at the end support: 

δ11 - the horizontal displacement of the structure induced by the virtual force 11 =X , 

δ22 - the rotation of the structure induced by the virtual moment 12 =X ,  

δ1N - the horizontal displacement of the free structure induced by ∆TN, 

δ2M - the rotation of the free structure induced by ∆TM. 

In the case of the structure presented in Figure 3a, the horizontal displacements and 

rotations have the form: 
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where the denominator EF1AF1 + EF2AF2 in (14) represents the axial stiffness of the 

both sandwich faces (E - Young modulus of the face material, A - the area of the 

cross-section of the face). The subscripts F1, F2 refer to the upper and lower face. 

For the simplicity of the presentation, the denominator in (14) is marked with the 

symbol DF. 

Comparing the right-hand sides of equations (10)-(11) to (12)-(13), taking into 

account (14)-(17), we finally arrive at the solution: 
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The support forces H1 and H2 are determined using (10), (11). The stresses (negative 

stress denotes compression) in the upper and lower face are: 
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3. The influence of the restriction of the horizontal displacement 

To demonstrate the impact of restrictions of the horizontal displacements at sup- 

ports, the one-span sandwich beam presented in Figure 3a is analyzed. The follow-

ing geometrical parameters of the beam were assumed: span L = 3.0 m, width 

b = 1.0 m, depth d = 0.10 m, upper and lower face thickness t = 0.0005 m, distance 

between centroids of sandwich faces e = 0.0995 m. The Young modulus of the 

faces is EF1 = EF2 = 210 GPa and thermal expansion coefficient α  = 12·10
–6

 1/°C. 

The temperature conditions simulate the typical case of interactions occurring in 

the summer: T1 = 65°C, T2 = 20°C and the temperature of the structure installation 

T0 = 10°C. 

Various stiffness coefficients of the elastic supports were considered from prac- 

tically rigid support (k = 1 000 000 kN/m) to the susceptible support (k = 100 kN/m). 

The elasticity of the supports is common in engineering practice. Figure 4 presents 

the stress level in the upper face (S1) and in the lower face (S2) as the function of the 

elasticity coefficient of the upper horizontal support k1. Figure 4a presents the solu- 

tion for the elasticity coefficient of the lower horizontal support k2 = 1 000 000 kN/m, 

whereas Figure 4b demonstrates the solution for k2 = 10 000 kN/m. 
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Fig. 4. The stress level in the upper face (S1 - solid line) and in the lower face 

(S2 - dashed line) as the function of the elasticity coefficient of the upper horizontal 

support k1: a) elasticity coefficient of the lower horizontal support 

k2 = 1 000 000 kN/m, b) k2 = 10 000 kN/m 

The solutions presented in Figure 4 are very interesting. The stress level in the 

lower face (S2) depends on the value k2 but does not depend on the elasticity coef-

ficient of the upper support k1. The graph S2 is constant with respect to k1. Ana-

logically, the stress in the upper face will be constant with respect to the variable 

k2. It is noteworthy that X1 and X2 in (18), (19) are dependent on both k1 and k2. In 

the case of rigid supports (Fig. 4a) the stresses in the upper and lower face reach 

129.5 and 23.55 MPa, respectively. These values are huge from the mechanical 

point of view. The stress values in the faces for the selected parameters k1, k2 are 

shown in Table 1. 

 

a) 

b) 
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Table 1 

The stress in the upper face (σF1) and in the lower face (σF2) in MPa, for selected 

values of parameters k1, k2 

Stress in faces σ [MPa] 

Upper face support elasticity k1 [kN/m] 

1 000 000 10 000 100 

Lower face support 

elasticity k2 [kN/m] 

1 000 000 
σ
F1

 = –129.5 

σ
F2

 = –23.55 

σ
F1

 = –17.32 

σ
F2

 = –23.55 

σ
F1

 = –0.198 

σ
F2

 = –23.55 

10 000 
σ
F1

 = –129.5 

σF2 = –3.150 

σ
F1

 = –17.32 

σF2 = –3.150 

σ
F1

 = –0.198 

σF2 = –3.150 

100 
σF1 = –129.5 

σF2 = –0.004 

σ
F1 = –17.32 

σF2 = –0.004 

σ
F1 = –0.198 

σF2 = –0.004 

 
It should be noted that the rigid horizontal supports generate high stresses in the 

sandwich faces and large horizontal forces H1, H2. Fortunately, in practice, the 

stiffness of the supports and stresses is more likely such as in the selected cell of 

the Table 1, namely stresses σF1 = –0.198 MPa and σF2 = –3.150 MPa. In this case 

the horizontal forces are H1 = 0.099 kN and H2 = 1.575 kN. Screws should transfer 

these forces from the sandwich to the substructure. The horizontal displacements at 

the level of the upper and lower face reach ∆1 = 0.9886 mm and ∆2 = 0.1575 mm. 

Such vulnerability of the substructure seems to be easily achievable. Despite this, 

in extreme situations, the impact of the restrictions of the horizontal displacements 

at the supports of sandwich panels should be carefully evaluated. 

Conclusions 

The derived formulas and presented results show that limitation of horizontal 

displacement and rotation at the supports significantly influence the mechanical 

state of sandwich beams. In the extreme situations (rigid supports and high thermal 

actions) the compression or tension in faces can be higher than 100 MPa. Installa-

tion temperature and uniform change of temperature (neglected so far in the static 

analysis) substantially change the stress and strain in systems with limited horizon-

tal displacements at supports. Changing temperatures occurring within a year cause 

that the sandwich faces in a different period of time are tensioned or compressed. 

Fortunately, structural systems are characterized by certain vulnerability, which 

decreases the impact of thermal effects. 
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