PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Explosives vapors–concentrating and optoelectronic detection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Detection of explosives vapors is an extremely difficult task. The sensitivity of currently constructed detectors is often insufficient. The paper presents a description of an explosive vapors concentrator that improves the detection limit of some explosives detectors. These detector s have been developed at the Institute of Optoelectronics. The concentrator is especially dedicated to operate with nitrogen oxide detectors. Preliminary measurements show that using the concentrator, the recorded amount of nitrogen dioxide released from a 0.5 ng sample of TNT increases by a factor of approx. 20. In the concentrator an induction heater is applied. Thanks to this and because of the miniaturization of the container with an adsorbing material (approx. 1 cm3), an extremely high rate of tempera ture growth is achieved (up to 500°C within approx. 25 s). The concentration process is controlled by a microcontroller. Compact construction and battery power supply provide a possibility of using the concentrator as a portable device.
Rocznik
Strony
177--190
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Military University of Technology, Gen. S. Kaliskiego 2 St., 00-908 Warsaw, POLAND
autor
  • Military University of Technology, Gen. S. Kaliskiego 2 St., 00-908 Warsaw, POLAND
autor
  • Military University of Technology, Gen. S. Kaliskiego 2 St., 00-908 Warsaw, POLAND
autor
  • Military University of Technology, Gen. S. Kaliskiego 2 St., 00-908 Warsaw, POLAND
  • Warsaw University of Technology, Koszykowa 75 St., 00-662 Warsaw
  • Military University of Technology, Gen. S. Kaliskiego 2 St., 00-908 Warsaw, POLAND
autor
  • Military University of Technology, Gen. S. Kaliskiego 2 St., 00-908 Warsaw, POLAND
autor
  • Military University of Technology, Gen. S. Kaliskiego 2 St., 00-908 Warsaw, POLAND
Bibliografia
  • [1] Bielecki, Z., Janucki, J., Kawalec, A., Mikołajczyk, J., Palka, N., Pasternak, M., Pustelny, T., Stacewicz, T., Wojtas, J. (2012). Sensors and systems for the detection of explosive devices. Metrol. Meas. Syst., 19(1), 3-28.
  • [2] Palka, N. (2010). Spectroscopy of explosive materials in the THz range. Acta Phys. Pol. A, 118(6), 1229-1231.
  • [3] Yinon, J., Zitrin, S. (1993) Modern Methods and Applications in Analysis of Explosives, Chichester, Wiley&Sons.
  • [4] Jankowski, P.J. , Mercdo, A.G., Hallowel, S.F. (1992). FAA Explosive vapor./particle detection technology, Proc.SPIE 1824, pp.13-20.
  • [5] Tsizin, G. I. (2011). Concerning the concentration factor. J. Anal. Chem., 66(5), 535. DOI: 10.1134/S1061934811050194
  • [6] Clark, A., McIntyre, H. P., Munro, W. A., Taylor, S. J., Turner, R. B. (2009). Preconcetrator and detector apparatus. Patent US 2009/0090196 A1.
  • [7] Manginell, R.P., Frye-Mason, G.C., Kottenstette, R.J., Lewis, P.R., Wong, C.C. (2000). Microfabricated planar preconcentrator. Tech. Digest 2000 Sol.-State Sensor and Actuator Workshop Transducers Research Foundation, Cleveland, OH, USA, , pp. 179-182.
  • [8] Martin, M.D., Crain, M.M., Walsh, K.M., McGill, R.A., Houser, E.J., Stepnowski, J.L., Stepnowski, S.V., Wu, H.-D., Ross, S.K. (2007). Microfabricated vapor preconcentrator for portable ion mobility spectroscopy. Sens. Actuators B-Chem. 126 (2) 447.
  • [9] McGill, R.A., Stepnowski, S.V., Houser, E.J., Simonson, D., Nguyen, V., Stepnowski, J.L., Summers, H., Rake, M., Walsh, K., Crain, M., Aebersold, J., Ross, S.K. (2006). CASPAR, a Microfabricated Preconcentrator for Enhanced Detection of Chemical Agents and Explosives, Proc. of Eurosensors XX. Göteborg, Sweden, T1A-03.
  • [10] Martin, M., Crain, M., Walsh, K., McGill, R.A., Houser, E.J., Mott, D., Stepnowski, J., Stepnowski, S., Nguyen, V., Wu, H.-D., Ross, S., Nagel, D.J., Voiculescu, I. (2004). Development of a Microfabricated Vapor Preconcentrator for Portable Ion Mobility Spectroscopy. Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, SC, USA, 390-391.
  • [11] Pai, R.S., McGill, R.A., Stepnowski, S.V., Stepnowski, J.L., Williams, K.P., Summers, H., Furstenberg, R., Rake, M.T., Nguyen, V.K., Simonson, D.L., Higgins, B., Kendziora, C., Houser, E.J. Towards enhanced detection of chemical agents: design and development of a microfabricated preconcentrator. (June 2007) Transducers & Eurosensors _07, 14th Int. Conf. Solid-State Sensors, Actuators and Microsystems, Lyon, France, 2291- 2294.
  • [12] Houser, E.J., Simonson, D.L., Stepnowski, J., Ross, S.K., Stepnowski III, S.V., McGill, R.A. (2004). Design of hydrogen bond acidic polycarbosilanes for chemical sensor applications, ACS Polym. Prepr. 45, 541-542.
  • [13] Lewis, P.R., Manginell, R.P., Adkins, D.R., Kottenstette, R.J., Wheeler, D.R., Sokolowski, S.S., Trudell, D.E., Byrnes, J.E., Okandan, M., Bauer, J.M., Manley, R.G., Frye-Mason, G.C. (2006). Recent advancements in the gas-phase MicroChemLab. IEEE Sens. J. 6(3), 784-795.
  • [14] Voiculescu I., Zaghloul, M. Narasimhan, N. (2008). Microfabricated chemical preconcentrators for gasphase microanalytical detection systems. Trends Anal. Chem., 27(4).
  • [15] Finlay, A., Yeatman, E., Wright, S. (2009). Pre-concentrator and sample interface. U.S. Patent 2009/0090197 A1
  • [16] Struk, P., Pustelny, T., Golaszewska, K., Kaminska, E., Borysewicz, M., Ekielski, M., Piotrowska, A. (2011). Photonic structures with grating couplers based on ZnO. Opto-Electron.Rev.19(4), 462-467.
  • [17] Hannum, D.W., Linker, K.L., Parmeter, J. E., Rhykerd, C.L., Varley, N.R. (2000). Miniaturized Explosive Preconcentrator for Use in a Man-Portable Field Detection System. Proceedings IEEE 34th Annual 2000 International Carnahan Conference on Security Technology. Ottawa, Ont, Canada, 222 - 227.
  • [18] Manginell, R.P., Frye-Mason, G.C., Kottenstette, R.J., Lewis, P.R., Wong, C.C. (2000). Microfabricated planar preconcentrator. Tech. Digest 2000 Sol.-State Sensor and Actuator Workshop Transducers Research Foundation, Cleveland, OH, USA, 179-182.
  • [19] McGill, R.A., Houser, E.J. (2003). Linear chemoselective carbosilane polymers and methods for use in analytical and purification applications. U.S. Patent No. 6,660,230.
  • [20] Achter, E.K., Hainsworth, E., Lieb, D.P., Miskolczy, G., Rounbehler, D.P., Wendel, G.J. (1992). Vapor concentrator, Patent US 5098451.
  • [21] Wojtas, J., Stacewicz, T., Bielecki, Z., Rutecka, B., Medrzycki, R., Mikolajczyk, J. (2013). Towards optoelectronic detection of explosives. Opt. Electron. Rev. 21(2), 9-18.
  • [22] Niedbała, R., Wesołowski, M. (2011). Criterions for Selection of Volume Induction Heating Parameters, Advances in Induction and Microwave Heating of Mineral and Organic Materials. S.Grundas (Ed.), ISBN 978-953-307-522-8, InTech, 159-180.
  • [23] Struk, P., Pustelny, T., Pustelny, B, Gołaszewska, K., Kamińska, E., Piotrowska, A., Borysiewicz, M., Ekielski, M. (2010). Zinc Oxide Semiconductor for Photonics Structures Applications. Acta Phys. Pol. A, 118(6), 1242-1245.
  • [24] Buszewski, B. (2010). Biosensors for the environmental monitoring of aquatic systems. Bioanalytical and chemical methods for endocrine disruptors. D. Barceló, P.-D. Hansen (Eds.). Anal. Bioanal. Chem. 396(2), 547-548.
  • [25] Błądek, J., Miszczak, M., Popiel, S. (1995). Separation and quantitation of high explosives by thin-layer chromatography, Chem. Anal. 40(5), 723-729.
  • [26] Wojtas, J., Mikolajczyk, J., Bielecki, Z. (2013). Aspects of the Application of Cavity Enhanced Spectroscopy to Nitrogen Oxides Detection. Sensors, 13(6), 7570-7598.
Uwagi
EN
The researches were supported by the Ministry of Science and High Education of Poland in 2009-2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67d32ea4-fe34-4532-9ce5-b04fde8f09c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.