PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy automatic control of the pyrolysis process for the municipal solid waste of variable composition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to the issues of the fuzzy automatic control of the pyrolysis process of municipal solid waste (MSW) of variable composition and moisture content. The fuzzy control method that is developed and studied makes it possible to carry out the proper automatic control of a pyrolysis plant with the determination of the optimal ratio of air/MSW for various types of waste and with different moisture content values to ensure high efficiency of the MSW disposal process. The effectiveness study of the proposed fuzzy control method is performed in this paper on a specific example, in particular, when automating the pyrolysis plant for MSW disposal with a reactor volume of 250 liters. The obtained simulation results confirm the high efficiency of the developed method, as well as the feasibility of its use for designing automatic control systems of various pyrolysis plants that operate under conditions of changes in the composition and moisture content of input waste.
Twórcy
  • Department of Intelligent Information Systems, Petro Mohyla Black Sea National University, Mykolaiv, Ukraine, 54003
  • Department of Intelligent Information Systems, Petro Mohyla Black Sea National University, Mykolaiv, Ukraine, 54003
autor
  • Department of software and computer-integration technologies, Odesa Polytechnic National University Odesa, Ukraine, 65044
  • Department of Power Supply and Energy Management, Odesа Polytechnic National University, Odesа, Ukraine, 65044
  • Scientific Center of the Naval Institute, Odesa Maritime National University Odesa, Ukraine, 65029
Bibliografia
  • [1] A. Tozlu, E. Ozahi, A. Abusoglu, “Waste to energy technologies for municipal solid waste management in Gaziantep”, Renewable and Sustainable Energy Reviews, Vol. 54, 2016, 809-815. DOI:10.1016/j.rser.2015.10.097
  • [2] R. Kothari, V. Tyagi, F. Pathak, “Waste to energy: A way from renewable energy sources to sustainable development”, Renewable and Sustainable Energy Reviews, Vol. 14, № 9, 2010, 3164-3170. DOI:10.1016/j.rser.2010.05.005
  • [3] C. Guizani, et al., “Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity”, Energies, 10(6), 2017, 796. DOI:10.3390/en10060796
  • [4] “Nur 16 Prozent des Plastikmülls werden wiederverwendet”, Newspaper website Spiegel, 2019. https://www.spiegel.de/wissenschaft/natur/plastikmuell-nur-16-prozent-werden-indeutschland-wiederverwendet-a-1271125.html
  • [5] Y. Li, R. Gupta, S. You, “Machine learning assisted prediction of biochar yield and composition via pyrolysis of biomass”, Bioresource Technology, Vol. 359, 2022, 127511. DOI:10.1016/j.biortech.2022.127511
  • [6] S. Wu, et al., “Simulation and optimization of heating rate and thermal uniformity of microwave reactor for biomass pyrolysis”, Chemical Engineering Science, Vol. 250, 2022, 117386.DOI:10.1016/j.ces.2021.117386
  • [7] S.N. Pelykh, M.V. Maksimov, M.V. Nikolsky, “A method for minimization of cladding failure parameter accumulation probability in VVER fuel elements”, Problems of Atomic Science and Technology,92(4), 2014, 108-116. https://www.researchgate.net/publication/289947827_A_method_for_minimization_of_cladding_failure_parameter_accumulation_probability_in_VVER_fuel_elements
  • [8] S.N. Pelykh, M.V. Maksimov, “The method of fuel rearrangement control considering fuel element cladding damage and burnup”, Problems of Atomic Science and Technology, 87(5), 2013, 84-90. https://vant.kipt.kharkov.ua/ARTICLE/VANT_2013_5/article_2013_5_84a.pdf
  • [9] M.V. Maksimov, S.N. Pelykh, R.L. Gontar, “Principles of controlling fuel-element cladding lifetimein variable VVER-1000 loading regimes”, Atomic Energy, 112(4), 2012, 241-249. DOI:10.1007/s10512-012-9552-3
  • [10] I. Atamanyuk, J. Kacprzyk, Y. Kondratenko, M. Solesvik, “Control of Stochastic Systems Based on the Predictive Models of Random Sequences”, In: Y.P. Kondratenko, A.A. Chikrii, V.F. Gubarev, J. Kacprzyk (Eds) Advanced Control Techniques in Complex Engineering Systems: Theory and Applications. Dedicated to Professor Vsevolod M. Kuntsevich. Studies in Systems, Decision and Control, Vol. 203. Cham: Springer Nature Switzerland AG, 2019, 105-128. DOI: 10.1007/978-3-030-21927-7_6
  • [11] O. Kozlov, G. Kondratenko, Z. Gomolka, Y. Kondratenko, “Synthesis and Optimization of Green Fuzzy Controllers for the Reactors of the Specialized Pyrolysis Plants”, Kharchenko V., Kondratenko Y., Kacprzyk J. (Eds) Green IT Engineering: Social, Business and Industrial Applications, Studies in Systems, Decision and Control, Vol 171, 2019, Springer, Cham, 373-396. DOI:10.1007/978-3-030-00253-4_16
  • [12] Y.P. Kondratenko, O.V. Kozlov, O.V. Korobko, “Two Modifications of the Automatic Rule Base Synthesis for Fuzzy Control and Decision Making Systems”, J. Medina et al. (Eds), Information Processing and Management of Uncertainty in Knowledge-Based Systems: Theory and Foundations, 17th International Conference, IPMU 2018, Cadiz, Spain, Proceedings, Part II, CCIS 854, Springer International Publishing AG, 570-582, 2018. OI:10.1007/978-3-319-91476-3_47
  • [13] Y.P. Kondratenko, A.V. Kozlov, “Generation of Rule Bases of Fuzzy Systems Based on Modified Ant Colony Algorithms”, Journal of Automation and Information Sciences, Vol. 51, Issue 3, 2019, New York: Begel House Inc., 4-25. DOI: 10.1615/JAutomatInfScien.v51.i3.20
  • [14] “Advance trends in soft computing”, M. Jamshidi, V. Kreinovich, J. Kacprzyk, Eds. Cham: Springer--Verlag, 2013. DOI:10.1007/978-3-319-03674-8
  • [15] Y.P. Kondratenko, O.V. Korobko, O.V. Kozlov, “Synthesis and Optimization of Fuzzy Controller for Thermoacoustic Plant”, Lotfi A. Zadeh et al. (Eds.) Recent Developments and New Direction in Soft--Computing Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 342, 2016, Berlin, Heidelberg: Springer-Verlag, 453-467. DOI:10.1007/978-3-319-32229-2_31
  • [16] J. Zhao, et al., “The fuzzy PID control optimized by genetic algorithm for trajectory tracking of robot arm”, 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 2016, 556-559. DOI: 10.1109/WCICA.2016.7578443
  • [17] J. Kacprzyk, “Multistage Fuzzy Control: A Prescriptive Approach”, John Wiley & Sons, Inc.,NewYork, NY, USA, 1997.
  • [18] W. Pedrycz, K. Li, M. Reformat, “Evolutionary reduction of fuzzy rule-based models”, Fifty Years of Fuzzy Logic and its Applications, STUDFUZ 326, Cham: Springer, 2015, 459-481.DOI:10.1007/978-3-319-19683-1_23
  • [19] N. Ben, S. Bouallègue, J. Haggège, “Fuzzy gains--scheduling of an integral sliding mode controller for a quadrotor unmanned aerial vehicle”, Int. J. Adv. Comput. Sci. Appl., Vol. 9, no. 3, 2018, 132-141. DOI: 10.14569/IJACSA.2018.090320
  • [20] J. Kacprzyk, Y. Kondratenko, J. M. Merigo, J. H. Hormazabal, G. Sirbiladze, A. M. Gil-Lafuente, “A Status Quo Biased Multistage Decision Model for Regional Agricultural Socioeconomic Planning Under Fuzzy Information”, In: Y.P. Kondratenko, A.A. Chikrii, V.F. Gubarev, J. Kacprzyk (Eds) Advanced Control Techniques in Complex Engineering Systems: Theory and Applications. Dedicated to Professor Vsevolod M. Kuntsevich. Studies in Systems, Decision and Control, Vol. 203. Cham: Springer Nature Switzerland AG, 2019, 201-226.DOI: 10.1007/978-3-030-21927-7_10
  • [21] D. Ghosh, S. K. Bandyopadhyay, G. S. Taki, “Green Energy Harvesting from Waste Plastic Materials by Solar Driven Microwave Pyrolysis,”2020 4th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), 2020, 1-4. DOI: 10.1109/IEMENTech51367.2020.9270122
  • [22] A.J. Bowles, G.D. Fowler, “Assessing the impacts of feedstock and process control on pyrolysis outputs for tyre recycling”, Resources, Conservation and Recycling, Vol. 182, 2022, 106277.DOI:10.1016/j.resconrec.2022.106277
  • [23] B. Zhang, D. -L. Xu, X. -D. Hu, Y. Liu, “Automatic control system of biomass pyrolysis gas carbon compound furnace based on PLC”, 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), 2020, 435-442. DOI: 10.1109/WCMEIM52463.2020.00098
  • [24] Y . P. Kondratenko, O. V. Kozlov, O. S. Gerasin, A. M. Topalov, O. V. Korobko, “Automation of control processes in specialized pyrolysis complexes based on Web SCADA Systems”, Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS): Proceedings of the 9th IEEE International Conference. Bucharest, Romania, volume 1, 2017, 107-112. DOI: 10.1109/IDAACS.2017.8095059
  • [25] Z. Fu, J. Wang and C. Yang, “Research on heat transfer function modeling of plastic waste pyrolysis gasification reaction kettle,” 2017 Chinese Automation Congress (CAC), 2017, pp. 2698-2701, DOI: 10.1109/CAC.2017.8243233
  • [26] Y.P. Kondratenko, O.V. Kozlov, “Mathematic Modeling of Reactor’s Temperature Mode of Multiloop Pyrolysis Plant”, Modeling and Simulation in Engineering, Economics and Management, Lecture Notes in Business Information Processing, Vol. 115, 2012, 178-187. DOI:10.1007/978-3-642-30433-0_18
  • [27] J. Hofmann, H. Holz, L. Gröll, “Relative Gain Array and Singular Value Analysis to Improve the Control in a Biomass Pyrolysis Process”, 2019 IEEE 15th International Conference on Control and Automation (ICCA), 2019, 596-603, DOI: 10.1109/ICCA.2019.8900025
  • [28] D. V. Tuntsev, et al., “The mathematical model of fast pyrolysis of wood waste”, 2015 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), 2015, 1-4, DOI: 10.1109/MEACS.2015.7414929
  • [29] Y.P. Kondratenko, O.V. Kozlov, L.P. Klymenko, G.V. Kondratenko, “Synthesis and Research of Neuro-Fuzzy Model of Ecopyrogenesis Multi--circuit Circulatory System”, Advance Trends in Soft Computing, Studies in Fuzziness and Soft Computing, Berlin, Heidelberg: Springer-Verlag, Vol. 312, 2014, 1-14. DOI:10.1007/978-3-319-03674-8_1
  • [30] Y.P. Kondratenko, O.V. Kozlov,“Mathematical Model of Ecopyrogenesis Reactor with Fuzzy Parametrical Identification”, Recent Developments and New Direction in Soft-Computing Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 342, Lotfi A. Zadeh et al.(Eds.). Berlin, Heidelberg: Springer-Verlag, 2016, 439-451. DOI:10.1007/978-3-319-32229-2_30
  • [31] F. S. Tudor, F. M. Boangiu, C. Petrescu, “First order controller for a petrochemical pyrolysis reactor”, 2nd International Conference on Systems and Computer Science, 2013, 20-25, DOI: 10.1109/IcConSCS.2013.6632017
  • [32] Q. Bu et al. “The effect of fuzzy PID temperaturę control on thermal behavior analysis and kinetics study of biomass microwave pyrolysis”, Journal of Analytical and Applied Pyrolysis, Vol. 158, 2021, 105176. https://doi.org/10.1016/j.jaap.2021.105176
  • [33] X. Liu, S. Wang, L. Xing, “Fuzzy self-tuning PID temperature control for biomass pyrolysis fluidized bed combustor”, 2010 2nd IEEE International Conference on Information Management and Engineering, 2010, 384-387. DOI: 10.1109/ICIME.2010.5477837
  • [34] M. Mircioiu, E. -M. Cimpoeşu, C. Dimon, “Robust control and optimization for a petrochemical pyrolysis reactor”, 18th Mediterranean Conference on Control and Automation, MED’10, 2010, 1097-1102, DOI: 10.1109/MED.2010.5547645
  • [35] P. Cristina, P. Alexandru, “Improving FCC plant performance with model reference adaptive control based on neural network”, 2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2016, 1-4. DOI: 10.1109/ECAI.2016.7861074
  • [36] D. Popescu, C. Petrescu, C. Dimon, M. Boangiu, “Control and optimization for a petrochemical reactor”, 2nd International Conference on Systems and Computer Science, 2013, 14-19. DOI: 10.1109/IcConSCS.2013.6632016
  • [37] M.V. Maksymov, et al., “Automatic Control for the Slow Pyrolysis of Organic Materials with Variable Composition”, in Advanced Control Systems: Theory and Applications. Series in Automation, Control and Robotics River Publishers, Y.P. Kondratenko et al. (Eds.), Chapter 14, 2021, 397-430. ISBN:978-87-7022-341-6
  • [38] O. Brunetkin, et al., “Development of the unified model for identification of composition of products from incineration, gasification, and slow pyrolysis”, EasternEuropean Journal of Enterprise Technologies, 4/6 (100), 2019, 25–31. DOI: 10.15587/1729-4061.2019.176422
  • [39] V.P. Sabanin, et al., “Load control and the provision of the efficiency of steam boilers equipped with an extremal governor”, Therm. Eng. 61, 2014, 905-910. DOI:10.1134/S004060151411007X
  • [40] Y.M. Kovrigo, T.G. Bagan, A.S. Bunke, “Securing robust control in systems for closed-loop control of inertial thermal power facilities”, Therm. Eng. 61, 2014, 183–188. DOI:10.1134/S0040601514030057
  • [41] S.A. Morales, D.R. Barragan, V. Kafarov, “3D CFD Simulation of Combustion in Furnaces Using Mixture Gases with Variable Composition”, Chemical Engineering Transactions, Vol. 70, 2018, 121-126. DOI: 10.3303/CET1870021
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67c88151-ac36-40e7-8233-3b9c88eff7c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.