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Abstract: Generating engine sound samples is a broad topic known for decades, mostly be-
cause of high usage of such algorithms in driving car simulations, especially in games. These
algorithms differ from very simple looped short sound players that change the frequency of
prerecorded samples to sophisticated algorithms that model the engine sound based on some
defined characteristics. The latter are computationally extensive and can’t be used in mobile
environment (such as smartphones). In this paper author presents own approach to use visual
analysis techniques to prepare a database of multiple recorded sound samples and a mixer
that can replay these sounds in proper order to mimic an engine sound in real-time.
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1. Introduction

Generating automotive engine sound samples is a broad topic known for decades,
mostly because of high usage of such algorithms in games, especially driving car
simulations, also professional ones such as presented in [14]. Engine sounds gener-
ator is very important for the feeling of speed during the simulation and is insepara-
ble unit of the whole experience, giving constant impression of speed. To accurately
model the sound of a motor vehicle, in direct response to the interactivity of the sim-
ulation, there are many challenges in order to represent it as realistic as possible.
These algorithms differ from very simple looped short sound players that change the
frequency of prerecorded samples to sophisticated algorithms that model the engine
sound based on some defined characteristics. First approaches to simulate car engine
sounds were done back in *80s using sine waves with eventually distortion added.
The first racing vehicle sounds were simulated using Revolutions Per Minute (RPM)
motor parameter and simple wave synthesis, so that the increase of RPM increased
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tone and motor sounds frequency. Even at this basic level, driving speed was commu-
nicated to the user and though these algorithms sounded very simple but were enough
to attract. One of very popular algorithms to represent engine sound is to use simple,
looped sounds with playback frequency correlated to the RPM value. The original
engine sound is recorded, played in a loop and then its frequency is changed depend-
ing on target RPM of the engine. Other algorithms use procedural engine models
to properly create dynamics in response to the player interaction, for example using
FFT analysis and granular synthesis, distortion and effects such as delay or flange.
These sophisticated algorithms model the sound based on some defined character-
istics of the engine. The latter are computationally extensive and can’t be used in
mobile environment (such as smart phones).

In this paper author presents own approach to use visual analysis techniques to
prepare a database of multiple recorded sound samples and a mixer that can replay
these sounds in proper order to mimic an engine sound in real-time.

2. Related work

Modeling of engine sound is not very popular research topic. Most existing solutions
are done commercially for the purpose of generating sounds for games and the idea
behind algorithms is not publicly shared. However, there are few publications that
are worth noting here. In [4] authors modeled and synthesized engine sounds using
a deterministic-stochastic signal decomposition approach, the deterministic compo-
nent was extracted using a FFT method and it was subtracted out from the original
signal and then the stochastic component was modeled and synthesized using a new
multipulse excited time-series modeling technique. The technique gives very good
results, however is quite computationally extensive, thus can’t be implemented in
mobile smartphones. Very often the sound generation is connected with implemen-
tation of a physics engine, as presented recently in [15] or [13]. Authors created a
framework that allows virtual object contact sounds to be synthesised in real time,
eventually adding a possibility to create car engine sounds. A very promising work is
presented in [9], where authors presented deep analysis of engine sounds and some
ideas are also base for this publication. Other approaches also exist to generate en-
gine sounds in real time, recently very popular became hardware boxes from Sonory
Engine Sound Synthesis [1]. These boxes can be hooked up to in-car stereo radio
system to replay artificial sounds of V8 engine based on RPM readings from internal
computer. Although these are implemented in hardware, still the sound is simulated
and synthesized thus it is not easily possible to change the characteristics to generate
different engine sounds.
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Engine sound analysis is much more popular topic in research, and mainly con-
cerns engine fault detection as for example in [10], a mobile application that analyzes
the engine sound and detects engine faults using discrete wavelet transform.

In this paper author presents own approach to use visual analysis techniques to
prepare a database of multiple recorded sound samples and a mixer that can replay
these sounds in proper order to mimic an engine sound in real-time.

3. Engine sound generator method

In this paragraph idea of the method to generate arbitrary engine sounds is presented.
To avoid computationally extensive engine sound synthesis and obtain realistic effect,
taking into account that the algorithm should be able to generate natural sounding
vehicle engine audio of multiple different engines and it should be relative easy to
switch and obtain sounds of other cars, author decided to create an algorithm that
creates and automatically organizes a bank of short sample sounds that will be used
for mixing by the engine sound player in real-time. In overall, to correlate engine
sounds with RPM readings one can use a plug to the car’s computer to obtain current
RPM readings. Unfortunately, not all available cars easily support sending a feedback
of the current RPM to a PC, especially old cars that do not have on-board computers.
Thus to avoid this problem and allow engineers to record and model sounds of very
old cars, a video analysis algorithm was created and current RPM is obtained from a
video frame.

In overall, this method contains a step that involves sound and video analysis of
recordings of the original sound of the engine. The setup consists of a video camera
that records readings of the RPM dial and in addition microphone that is attached to
the car body to record sounds. Sounds are recorded together with video of the RPM
dial on site, eventually operator drives a car with a load attached. These recordings are
then marked and transferred to a PC that performs video analysis. Sounds and video
frames are extracted and analyzed using the algorithm described below to create a
bank of organized short audio samples marked with the RPM readings.

3.1 Video analysis and extracting RPM readings

To allow users to record sounds of cars with significant load, recordings must be done
within a car that is in motion. Very often the mounted camera creates shaky videos,
especially when car drives on uneven terrain. Thus before to obtain a RPM reading
from one video frame, first that video needs to be stabilized.
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Many different video stabilization techniques exist. Main purpose of this step is
to reduce in-between frames motion. Author decided to create his own approach to
video stabilization based on detection of features in images and so-called keypoints
detectors and descriptors. First a marker is defined manually, this could be a vehicle
logo or some other element which is visible on all frames and that does not overlap
the RPM dial. This marker image is used as a reference point to stabilize the video.
From this marker image keypoints are detected and descriptors are calculated.

Image feature descriptors are becoming a standard in current state of the art
of image recognition algorithms. For this study, author selected most common and
popular feature detectors: Scale-Invariant Feature Transform (SIFT [12]), Speeded
Up Robust Features (SURF [5]) and also recently presented Binary Robust Invariant
Scalable Keypoints (BRISK [11]). Results of the accuracy of marker image detection
are presented in section 4.

In a new video frame a marker image is detected. First, keypoints are found
using the same feature detector, these keypoints form a set K. = {py, p2,...} and are
considered as candidates for keypoints that correspond to the marker image. For all
keypoints in the set K. feature descriptors D, are calculated, so that each element from
set K, corresponds to one descriptor from set D.. A nearest neighbour kNN search is
performed on detected keypoints in a new frame and marker keypoints with! K = 2.
Found pairs are filtered to find good matches using technique described in [7]: first,
the minimum distance (min) is found from all matches, and then all distances that are
bigger than 2 - min are discarded. If the amount of keypoints in a set containing found
matches is less than 4 (thus, at least four corners), then the marker is not detected and
that frame is skipped: stabilization is not performed, the marker image is not visible.
In other case the marker is detected and a homography is found using a RANSAC [8]
algorithm using pairs of keypoint matches and then perspective matrix transformation
of vectors is performed. If the transformed polygon is not convex, then the marker is
considered not detected.

When a position of the marker on a new video frame is known, then a relative
position to the original position of the marker can be calculated. The whole video
frame is then shifted in the opposite direction to overlay a marker from new frame on
a marker in the previous (original) frame and video stabilization is continued for next
frames.

! The k=2 in kNN is suggested by J. Beis and D. Lowe in their Best-Bin-First (BBF) algorithm [6]
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3.2 Detection of angle of the RPM pointer

When video is stabilized a next step of the algorithm is detection of the RPM pointer
and then its angle. Knowing the angle one can calculate also the RPM reading. All
video frame images are processed to obtain number of RPMs connected with a video
frame using following algorithm steps:

1.

Image is converted to a gray scale color space.

2. Binarisation filter is applied with threshold calculated using Mean Iterative Se-

lection [2]. During each iteration the average brightness Tp is determined for all
pixels below the estimated threshold, and similarly also the average brightness
Tw of all pixels above value of the estimated threshold. The new value of the es-
timated threshold value is calculated as the average of the two values T and Ty .
The general formula for calculating the estimated value of the threshold for the
histogram #:

Ti—1 N
Y ixhi] Y ixnhl[i]
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The moment of stopping the algorithm is the condition:

(Tg=Tw)V (Tie1 = Tx) 2)

Boundaries of the dial are detected using a sweep algorithm and pixels that reside
inside a circle of the RPM dial are extracted and considered for further analysis.

A Hough Transform is calculated. From the resulting Hough Transform matrix
the best representative of the angle (0) and offset of the most visible line is chosen.
When these representatives are multiple then values are averaged.

RPM pointer angle is detected using data from the previous step. It is possible that
angle will be not correct. The Hough Transform result can detect angle from op-
posite part of the circle, and in such cases that angle needs to be corrected. First a
RPM dial is divided into 4 equal parts. Then, amount of pixels that reside in each
quarter is calculated and from that it is known in which quarter the pointer is lo-
cated. Then simple correction calculations are performed, for example, if pointer
is detected in left-down quarter and 0 is higher than 220°then 6 = [180° — 9|,
etc.

Finally, a RPM angle value is linearly scaled to reflect RPM values range, thus
for example 180° becomes 3000 RPMs and so on.
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RPM pointer readings calculated from the angle are stored for all video frames.
For each frame as a result from this step a RPM reading is stored together with short
sound sample which has a duration of one frame: 1/(frames per second). These
readings will be organized into bulk groups of samples. The algorithm is explained
in following paragraph.

Example of the RPM pointer detection is presented in Figure 1, and Hough
Transform matrix used to RPM pointer angle detection is visible in Figure 2.

Fig. 1. Example of RPM pointer detection steps. Original video frame image, segmented pointer and
divided dial with selected quarter highlighted.

3.3 Samples database creation

In previous paragraph all video frames were analyzed and RPM readings were stored.
Next step organizes sound samples into three groups: constant RPM, accelerate and
decelerate groups of samples. For this purpose vector of all RPM values is analyzed.
First the RPM signal is smoothed using gaussian smooth filter and then for each
frame discrete derivative is calculated. Knowing derivatives then groups of samples
that consist of acceleration, deceleration or constant RPM values are found, however
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Fig. 2. Hough Transform matrix calculated on segmented pointer example from Figure 1.

Table 1. Example temporary data structure for storage of detected RPMs together with video frames.
From this structure three groups of samples are created.

Frame # [RPM| State  [Start Frame #|End Frame #]Min RPM[Max RPM

1 750 | Constant 1 3 750 770
2 770 | Constant 1 3 750 770
3 760 | Constant 1 3 750 770
4 800 | Accelerate 4 6 760 900
5 850 | Accelerate 4 6 760 900
6 900 | Accelerate 4 6 760 900
7 850 | Decelerate 7 9 900 750
8 800 | Decelerate 7 9 900 750
9 750 | Decelerate 7 9 900 750

to avoid erroneous state changes with too rapid differences, frames are analyzed in
clusters of 3 frames. Thus, to confirm detection of a state change from constant to
acceleration, then three consecutive frames have to show the RPM acceleration. In
addition an information in which frame this group started and in which frame that
state ended is stored, as well as RPM for that group of samples. All groups of samples
are kept in three separate buckets: constant RPMs, accelerations and decelerations.
See as an example Table 1 where the concept is shown. Please note that RPM for a
frame starts as a previous value and finishes as current frame’s RPM (for example
see frame #4). This example stores links to three groups of samples detected, one
constant, one accelerate and one decelerate group. Start, end frames and start, end
RPMs are stored with groups and dataset is created.

3.4 Method to select group of samples during playback

The real-time player of the engine sounds is playing recorded samples based on in-
formation obtained after analysis from the previous sections. The input parameters to
the player are target RPM (R;44¢) and the engine load. The engine load parameter
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just selects proper bank of previously analyzed samples. R;q¢.; is a RPM value to
which the engine should aim and select consecutive sound samples.

The algorithm selects samples to be played based on dependencies of current
RPM (Reyrrens) and target RPM (Ry4r4e1). Knowing RPM of the sound sample that
was previously played the algorithm selects new samples to be played as follows:

1. If the Ryarger 18 €qual Reyrrens then select a random group of samples from ’*Con-
stant” samples bucket that has RPM equal to the R;y;ger

2. If the R;qrger s higher than Reyyren then select a random group of samples from
*Accelerates’ samples bucket that has minimum RPM equal or below the R rens
and the maximum RPM equal or higher than the R;yger. If the Reyprens is not
equal starting RPM of this group of samples then scroll the sample to frame that
matches Ryrrent-

3. If the Ryurger 18 less than Reyren then select a random group of samples from *De-
celerates’ sample bucket that has minimum RPM equal or higher than the R ;e
and maximum RPM equal or below the Ryuger. If the Reyrrens 1s not equal start-
ing RPM of this group of samples then scroll the sample to frame that matches

Rcurrent-

The above algorithm is run every sample step. Note, that if a current group of
samples that is played resides in ’Accelerates’ bucket and maximum RPM from the
group is higher than R;,¢., then that group is replaced by a group of samples from
the *Constant’ bucket when R, en; T€aches Ryqyge. Analogously, if a current group of
samples that is played resides in *Decelerates’ bucket and minimum RPM in a group
is lower than Ry, then that group is replaced by a group of samples from the
"Constant’ bucket when R, rens reaches Ryqpger. That group replacement is achieved
by the first step of the algorithm.

To quickly select proper group of samples a Red-Black tree is used as a stor-
age structure and search algorithm. In addition number of uses of a particular group
of samples is recorded. When a group of samples is selected to be played then the
number of usages is increased. Algorithm selects new group of samples based on the
amount of previous usages, thus it favors selection of a group that was not played
before than replaying the same again. This approach avoids repeatable loops of the
same group of samples.

Furthermore, a classical volume (amplitude) ramping method [3] is used, so each
sample group to be played is overlapped during mixing with previous to avoid clicks
and noise in a place of cut (see Figure 3).
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Fig. 3. Ramp-mixing of two groups of samples (signals). Green horizontal lines over the signals show
output volume. The Output signal does not have clicks when two signals are joined.

4. Results

4.1 Comparison of marker detection algorithm

First results of marker detection algorithm from section 3.1 for the purpose of video
stabilization will be presented. Image marker was extracted from first video frame and
other video frames were processed. Resolution of the marker was 240x 160 pixels.
Normally video recording parameters can change, so to mimic this video frame im-
ages were changed: scale, noise, rotation, blur and lightness filters were applied and
detection results gathered. A ratio parameter was obtained in such way: first from the
original marker image keypoint descriptors were calculated, then video frames were
changed and on these amended images marker was detected using algorithm from
section 3.1. The ratio is a number of properly matched keypoints in a new image
(that are positioned inside marker area) divided by the original number of keypoints
from the marker. A ratio of 1.0 means that all the keypoints from the marker image
were found properly in the amended image. Results of this experiment are presented
in Table 2. It is clearly seen that SURF algorithm is performing best video stabiliza-
tion, surprisingly weak result of BRISK algorithm can be explained by low resolution
of the marker image.

4.2 Engine sound generator

It is not easy to create a comparatory review of the algorithm presented in this paper.
It is possible however to create a spectrogram of sounds generated by real vehicle
engine and compare it with results generated by the algorithm presented. These spec-
trograms should not be equal, as real engine sound is not generating exactly the same
sound every time and also it depends on the RPM throttle, so frequencies will vary
over time. But visualization of such spectrograms gives information about common
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Ratio Time
SURF|SIFT[BRISK][SURF[SIFT[BRISK]
LIGHTNESS|| 96.9 |94.0| 60.7 27 | 28 2

NOISE(| 99.1 [98.7| 95.7 75 | 50 5

SCALE]|| 90.5 |87.8| 40.4 | 133 | 123 9

ROTATE]|| 98.4 [96.6| 66.7 42 | 49 5

BLUR|| 97.0 |96.8| 18.5 39 | 38 2

Table 2. Video-stabilization marker detection accuracy and algorithm run time. The higher ratio value,
the better. The lower time value, the better.

Image filter

frequencies to some extent. Example spectrograms that show differences in real vehi-
cle sound and generated ones are visible in Figure 4, so they can be compared. Author
performed also a subjective study on the quality of the playback on a limited number
of people, however this topic needs to be studied further.

LA R RN A RCGTUCUT (ki A i AR, A

Fig. 4. Spectrogram of real car engine sound (left) and generated by the algorithm (right).

5. Conclusions

Modeling of engine sound is not very popular research topic. Most existing solutions
were implemented commercially for the purpose of generating sounds for games and
the idea behind algorithms is not publicly shared. Author created his own method
to generate vehicle engine sounds that uses visual analysis techniques to prepare a
database of multiple recorded sound samples and a mixer that can replay these sounds
in proper order to mimic an engine sound in real-time. The solution can be used in
a limited environment, such as for example on mobile smartphones. The algorithm
generates audio that can successfully mimic sounds of vehicle engine and it can be
used for the purpose of driving car simulation or computer games, especially in a
limited environment.
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GENERATOR DZWIEKU SILNIKA W CZASIE
RZECZYWISTYM NA PODSTAWIE ANALIZY WIDEO
1 ZAREJESTROWANYCH PROBEK

Streszczenie: Generowanie dZwigku silnika jest szerokim tematem znanym od dziesigcio-
leci, gtéwnie z powodu zastosowania takich algorytméw we wszelakiego rodzaju symula-
cjach jazdy samochodem, a w szczegdlnosci grach komputerowych. Algorytmy te stosuja
rézne podejscia, m.in. od bardzo prostych odtwarzaczy zapetlonych dZzwigkéw, ktére zmie-
niaja czestotliwo$¢ nagranych uprzednio prébek do zaawansowanych algorytméw modelo-
wania dZwigku silnika na podstawie okreSlonych cech charakterystyki silnika. Algorytmy te
sa obliczeniowo skomplikowane i nie moga by¢ stosowane w urzadzeniach przenos$nych (ta-
kich jak np. smartfony) w czasie rzeczywistym. W tym artykule autor przedstawia wi,asne
podejscie do korzystania z technik analizy wizualnej aby automatycznie przygotowaé baze
wielu nagranych krétkich probek dZzwigkowych oraz miksera, ktéry odtwarza uporzadko-
wane dZzwigki w odpowiedniej kolejnosci, tak aby nasladowac sterowalny dZwigk silnika w
czasie rzeczywistym.

Stowa kluczowe: generator dZzwigku silnika, nagrane prébki, mikser, analiza wizualna, Ho-

ugh Transform

Artykut zrealizowano w ramach pracy badawczej MB/W1/3/2012.

136



