Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Optical microscopy and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) analyses were used to characterize britholite-(Ce) of the metaluminous granite (Proterozoic) intruded into the Nubian Formation in southwestern Egypt and having a relatively high content of radioactive elements (potassium = 4.4 wt%, thorium = 52 ppm, uranium = 10 ppm). The britholite-(Ce) studied here incorporates light rare earth elements (LREE) including lanthanum, cerium, praseodymium, and neodymium as well as thorium. The mineral forms as tabular crystals in a fine-grained quartz-K-feldspar-plagioclase matrix, coexisting with other accessory minerals including biotite, zircon, clinochlore, titanite, and magnetite. Primary britholite-(Ce) usually includes titanite, zircon, and magnetite and is occasionally included in biotite. The inclusion of britholite-(Ce) in biotite suggests that the two minerals crystallized approximately coevally. Petrographical and SEM-EDS data indicate breakdown of the primary magmatic britholite-(Ce) in the samples. This study constitutes the first report for a sole presence of britholite-(Ce) as LREE phase in metaluminous granite samples from Egypt.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
11--17
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Nuclear Materials Authority, El Katameya, New Cairo 3, Cairo Governorate 4710030, Egypt
Bibliografia
- Arden, K.M., & Halden, N.M. (1999). Crystallization and alteration history of britholite in rare-earth-elementenriched pegmatitic segregations associated with the Eden Lake Complex, Manitoba, Canada. The Canadian Mineralogist, 37, 1239–1253. Available from: https://rruff-2.geo.arizona.edu/uploads/CM37_1239.pdf
- Baioumy, H.M., Ismael, I.S., & Zidan, I.H. (2003). Clay mineralogy of the Nubia Formation, Western Desert (Egypt). Geologica Carpathica, 54, 329–336. Available from: file:///C:/Users/IT%20Computer/Downloads/GeolCarp_Vol54_No5_329_336%20(1).pdf
- Della Ventura, G., Williams, C.T., Cabella, R., Oberti, R., Caprilli, E., & Bellatreccia, F. (1999). Britholitehellandite intergrowths and associated REE-minerals from the alkali-syenitic ejecta of the Vico volcanic complex (Latium, Italy); petrological implications bearing on REE mobility in volcanic systems. European Journal of Mineralogy, 11, 843–854. DOI: 10.1127/ejm/11/5/0843
- EGSMA (1981). Geological map of Egypt, scale 1:2,000,000. Geological Survey and Mining Authority, Abbasyia, Cairo, Egypt.
- Hall, M.G., & Lloyd, G.E. (1981). The SEM examination of geological samples with a semiconductor backscattered electron detector. Americal Mineralogist, 66, 362-368. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/66/3-4/362/41263/ The-SEM-examination-of-geological-samples-witha?redirectedFrom=fulltext
- Hassan, K.M. (2008). Petrography, chemistry and radioactivity of granitoids at north Gebel Seri, South Western Desert, Egypt. Isotope and Radiation Research, 40, 615–629. https://inis.iaea.org/search/search.aspx?orig_q=RN:40047318
- Hassan, K. M. (2009). Characterization of granites by 57Fe Mössbauer spectroscopy. Mineralogia, 40, 95–106. DOI: 10.2478/v10002-009-0008-x
- Keevil, B. (1944). Thorium-uranium ratios in rocks and minerals. American Journal of Science, 242, 309-321. https://doi.org/10.2475/ajs.242.6.309
- Kurdina, M.A., Kurdin, V.S., & Sidorenko, G.A. (1961). Britholite and alumobritholite from alkali pegmatites of Siberia. Geologiya mestorozhdenii redkikh elementov, 9, 108–120 (in Russian).
- List, F.K., El-Gaby, S., & Tehrani, R. (1989). The basement rocks in the Eastern and Western Deserts and Sinai. In Stratigraphic lexicon and explanatory note to the geologic map of Egypt 1:500000 (Hermina, M., Klitzsch, E. & List F. eds.). Egyptian General Petroleum Corporation, Cairo, Egypt (33–56).
- Macdonald, R., Bagiński, B., Dzierżanowski, P., & Jokubauskas, P. (2013). Apatite-supergroup minerals in UK Palaeogene granites: composition and relationship to host-rock composition. European Journal of Mineralogy, 25, 461–471. https://doi.org/10.1127/0935-1221/2013/0025-2291
- Melluso, L., De’Gennaro, R., Fedele, L., Franciosi, L., & Morra, V. (2012). Evidence of crystallization in residual, Cl–Frich, agpaitic, trachyphonolitic magmas and primitive Mg-rich basalt–trachyphonolite interaction in the lava domes of the Phlegrean Fields (Italy). Geological Magazine, 149, 532–550. https://doi.org/10.1017/S0016756811000902
- Nash, W.P. (1972). Apatite chemistry and phosphorous fugacity in a differentiated igneous intrusion. American Mineralogist, 57, 877–886. https://pubs.geoscienceworld.org/msa/ammin/articleabstract/57/5-6/877/542646/Apatite-chemistry-andphosphorus-fugacity-in-a?redirectedFrom=fulltext
- Oberti, R., Ottolino, L., Della Ventura, G., & Parodi, G.C. (2001). On the symmetry and crystal chemistry of britholite: New structural and microanalytical data. American Mineralogist, 86, 1066–1075. https://doi.org/10.2138/am-2001-8-913
- Orlandi. P., Perchiazzi, N., & Mannucci, G. (1989). First occurrence of britholite-(Ce) in Italy (Monte Somma, Vesuvius). European Journal of Mineralogy, 1, 723–725. https://pubs.geoscienceworld.org/eurjmin/articleabstract/1/5/723/61487/First-occurrence-of-britholiteCe-in-Italy-Monte
- Pan. Y., & Fleet, M.E. (2002). Compositions of the apatite-group minerals: Substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry, 48, 13–49. https://doi.org/10.2138/rmg.2002.48.2
- Paserop, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J., & White, T.J. (2010). Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163–179. https://doi.org/10.1127/0935-1221/2010/0022-2022
- Pekov, I.V., Pasero, M., Yaskovskaya, A.N., Chukanov, N.V. Puscharovsky, D.Y., Merlino, S., Zubkova, N.V, Kononkova, N.N., Men’shikov, Y.P., & Zadov, A.E. (2007). Fluorcalciobritholite, (Ca, REE)5[(Si, P)O4]3 F, a new mineral: description and crystal chemistry. European Journal of Mineralogy, 19, 95–103. https://doi.org/10.1127/0935-1221/2007/0019-0095
- Rudnik, R.L. & Gao, S. (2003). Composition of the continental crust. In Treatise on geochemistry, 3 (Rudnick, R.L., Holland, H.D. & Turekian, K.K. eds.), ElsevierPergamon, Oxford (1–64). http://dx.doi.org/10.1016/b0-08-043751-6/03016-4
- Sabet, A.H. (1972). On the stratigraphy of basement rocks of Egypt. Annals of the Geological Survey of Egypt, II, 79–102.
- Tang, M., Rudnick, R.L., Mcdonough, W.F., Gaschnig, R.M., & Huang, Y. (2015). Europium anomalies constrain the mass of recycled lower continental crust. Geology, 43, 703–706. https://doi.org/10.1130/G36641.1
- Uher, P., Ondrejka, M., Bačík, P., Broska, I., & Konečný, P. (2015). Britholite, monazite, REE carbonates, and calcite: Products of hydrothermal alteration of allanite and apatite in A-type granite from Stupné, Western Carpathians, Slovakia. Lithos, 236–237, 212–225. https://doi.org/10.1016/j.lithos.2015.09.005
- Vilalva, F.C.J., Vlach, S.R.F., & Simonetti, A. (2013). Nacareniobsite-(Ce) and britholite-(Ce) in peralkaline granites from the Morro Redondo Complex, Graciosa Province, Southern Brazil: occurrence and compositional data. The Canadian Mineralogist, 51, 313–332. https://doi.org/10.3749/canmin.51.2.313
- Yunhua, S., & Lipu, S. (1987). REE geochemistry of the weathered crust of acid volcanic rocks—an experimental study. Chinese Journal of Geochemistry, 6, 165–176. https://link.springer.com/article/10.1007/ BF02872217
- Zozulya, D., Lyalina, L., Macdonald, R., Bagiński, B., Savchenko, Y., & Jokubauskas, P. (2019). Britholite group minerals from REE-rich lithologies of Keivy alkali granite—Nepheline Syenite Complex, Kola Peninsula, NW Russia. Minerals, 9, 732. https://doi.org/10.3390/min9120732
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67beba56-7077-4bce-b294-82704311dea9