Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The concept of memory is of central importance for characterizing complex systems and phenomena. Presence of long-term memories indicates how their dynamics can be less sensitive to initial conditions compared to the chaotic cases. On the other hand, it is empirically known that the Feller–Pareto distribution, which decays as the power law i.e. the scale-invariant nature, frequently appears as a statistical law generated by the dynamics of complex systems. However, it is generally not a simple task to determine if a system obeying such a power law possesses a high degree of complexity with a long-term memory. Here, a new method is proposed for characterization of memory. In particular, a scaling relation to be satisfied by any memoryless dynamics generating the Feller–Pareto power-law distribution is presented. Then, the method is applied to the real data of energies released by a series of earthquakes and acceleration of ground motion due to a strong earthquake. It is shown in this way that the sequence of the released energy in seismicity is memoryless in the event time, whereas that of acceleration is memoryful in the sampling time.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2081--2087
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Department of Physics, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
- Institute of Physics, Kazan Federal University, Kazan 420008, Russia
- Department of Natural and Mathematical Sciences, Turin Polytechnic University in Tashkent, Tashkent 100095, Uzbekistan
autor
- College of Science and Technology, Nihon University, Chiba 274-8501, Japan
Bibliografia
- 1. Abe S, Rajagopal AK (2000) Rates of convergence of non-extensive statistical distributions to Lévy distributions in full and half-spaces. J Phys A Math Gen 33:8723–8732
- 2. Abe S, Suzuki N (2009) Violation of the scaling relation and non-Markovian nature of earthquake aftershocks. Phys A 388:1917–1920
- 3. Abe S, Suzuki N (2012) Aftershocks in modern perspectives: complex earthquake network, aging, and non-Markovianity. Acta Geophys 60:547–561
- 4. Bardou F, Bouchaud J-P, Aspect A, Cohen-Tannoudji C (2002) Lévy statistics and laser cooling. Cambridge University Press, Cambridge
- 5. Barndorff-Nielsen OE, Benth FE, Jensen JL (2000) Markov jump processes with a singularity. Adv Appl Prob 32:779–799
- 6. Caruso F, Pluchino A, Latora V, Vinciguerra S, Rapisarda A (2007) Analysis of self-organized criticality in the Olami-Feder-Christensen model and in real earthquakes. Phys Rev E 75:055101
- 7. Clark RM, Cox SJD, Laslett GM (1999) Generalizations of power-law distributions applicable to sampled fault-trace lengths: model choice, parameter estimation and caveats. Geophys J Int 136:357–372
- 8. Gradshteyn IS, Ryzhik IM (1980) Tables of integrals, series, and products, 5th edn. Academic Press, London
- 9. Kantz H, Schreiber T (2004) Nonlinear time series analysis, 2nd edn. Cambridge University Press, Cambridge
- 10. Lewis GS, Swinney HL (1999) Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow. Phys Rev E 59:5457–5467
- 11. Mantegna RN, Stanley HE (2000) An introduction to econophysics. Cambridge University Press, Cambridge
- 12. Mori H, Hata H, Horita T, Kobayashi T (1989) Statistical mechanics of dynamical systems. Prog Theor Phys Suppl 99:1–63
- 13. Riggs JD, Lalonde TL (2017) Handbook for applied modeling: non-gaussian and correlated data. Cambridge University Press, Cambridge
- 14. Schuster HG, Just W (2005) Deterministic chaos: an introduction, 4th edn. Wiley-VCH, Weinheim
- 15. Tsuji D, Katsuragi H (2015) Temporal analysis of acoustic emission from a plunged granular bed. Phys Rev E 92:042201
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67bc281f-c149-429b-97a7-199b4c9fa118