PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Machining parameter optimization for EDM machining of Mg–RE–Zn–Zr alloy using multi-objective Passing Vehicle Search algorithm

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mg alloys are known for their specific strength, stiffness, damping capacity, EMI shielding. Particularly, Rare earths added Mg alloys find applications in the gear box casing, transmission housing, engine mount, ribs, frames, instrument panels due to their improved corrosion resistance, pressure tightness, specific strength and creep strength. Reemergence of Mg alloys in the aircraft structural applications demands for advanced machining processes such as EDM to fabricate complex geometry parts. In this study, parametric multi-objective optimization of EDM on Mg–RE–Zn–Zr alloy is carried out using the novel meta-heuristic algorithm – Passing Vehicle Search (PVS). The input parameters considered are pulse-on (Ton), pulse-off (Toff) and peak current (A). Response surface method (RSM) is implemented through the Box–Behnken design to formulate a mathematical model for Material Removal Rate (MRR), Tool Wear Rate (TWR) and Roundness of holes. The accuracy of theoretical model has been established using the confirmation runs. Using the weighted sum method, the multi-objective PVS calculated optimal solutions for different weights to generate 2-D and surface pareto fronts. These pareto fronts were evaluated for performance determination of PVS using novel and established metrics such as spacing, spreading, hypervolume and pure diversity. The values of performance metrics indicate acceptable nature of the graphs and such analysis would facilitate better comparisons of solutions to select algorithms for optimization. Finally, decision making is illustrated with the help of level diagrams to draw up practical inferences for designing production plans and providing the best choice of machining parameters according to their preferences.
Rocznik
Strony
799--817
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr.
Twórcy
autor
  • Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India
autor
  • Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India
autor
  • Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India
autor
  • Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India
autor
  • Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India
autor
  • Defence Materials and Stores Research and Development Establishment (DMSRDE), DRDO, Kanpur, India
autor
  • Center for Military Airworthiness and Certification, Marathalli Colony Post, Bangalore, India
Bibliografia
  • [1] N.M. Abbas, D.G. Solomon, F. Bahari, A review on current research trends in electrical discharge machining, Int. J. Mach. Tools Manuf. 47 (2007) 1214–1228.
  • [2] E. Jameson, Electrical discharge machining, Soc. Manuf. Eng. (2001).
  • [3] R. Mukherjee, S. Chakraborty, Selection of EDM process parameters using biogeography-based optimization algorithm, Mater. Manuf. Process. 27 (9) (2012) 954–962.
  • [4] S.K. Choudhary, R.S. Jadoun, Current advanced research development of electric discharge machining (EDM): a review, Int. J. Res. Adv. Technol. 2 (3) (2014) 2321–9637.
  • [5] P.D. Caton, Magnesium – an old material with new applications, Mater. Des. 12 (6) (1991) 137–139.
  • [6] B.L. Mordike, T. Ebert, Magnesium properties – applications – potential, Mater. Sci. Eng. Arch. 302 (1) (2001) 37–45.
  • [7] T. Ram Prabhu, S. Vedantam, V. Singh, Magnesium alloys, in: N.E. Prasad, R.J.H. Wanhill (Eds.), Aerospace Materials and Material Technologies: vol. 1 (Aerospace Materials), Indian Institute of Metals Series, Springer, 2017 (Chapter 1). ISBN 978-981-10-2134-3.
  • [8] T. Ram Prabhu, Effect of synthetic graphite and activated charcoal addition on the mechanical, microstructure and wear properties of AZ 81 Mg alloys, J. Mater. Res. Technol. 5 (3) (2016) 259–267.
  • [9] B. Gwynne, P. Lyon, Magnesium alloys in aerospace applications, past concerns, current solutions, in: Triennial International Aircraft Fire and Cabin Safety Research Conference, 2007.
  • [10] https://www.magnesium-elektron.com.
  • [11] M.A.R. Khan, M.M. Rahman, K. Kadirgama, A.R. Ismail, RSM model to evaluate material removal rate in EDM of Ti–5Al– 2.5Sn using graphite electrode, in: International Conference on Mechanical Engineering Research, 2011.
  • [12] F. Alavi, M.P. Jahan, Optimization of process parameters in micro-EDM of Ti–6Al–4V based on full factorial design, Int. J. Adv. Manuf. Technol. (2017) 1–21.
  • [13] E. Ferraris, D. Reynaerts, B. Lauwers, Micro-EDM process investigation and comparison performance of Al3O2 and ZrO2 based ceramic composites, CIRP Ann. Manuf. Technol. 60 (1) (2011) 235–238.
  • [14] W. Ming, J. Ma, Z. Zhang, H. Huang, D. Shen, G. Zhang, Y. Huang, Soft computing models and intelligent optimization system in electro-discharge machining of SiC/Al composites, Int. J. Adv. Manuf. Technol. (2016) 1–17.
  • [15] P. Srinivasa Rao, K. Ramji, B. Satyanarayana, Effect of wire EDM conditions on generation of residual stresses in machining of aluminum 2014 T6 alloy, Alexand. Eng. J. 55 (2) (2016) 1077–1084.
  • [16] S. Gopalakannan, T. Senthilvelan, S. Ranganathan, Modeling and optimization of EDM process parameters on machining of Al 7075-B4C MMC using RSM, Proc. Eng. 38 (2012) 685–690.
  • [17] V.R. Khullar, N. Sharma, S. Kishore, R. Sharma, RSM- and NSGA-II-based multiple performance characteristics optimization of EDM parameters for AISI 5160, Arab. J. Sci. Eng. 42 (5) (2017) 1917–1928.
  • [18] M. Kumar, K. Kumar, T. Kr, P. Sahoo, Application of artificial bee colony algorithm for optimization of MRR and surface roughness in EDM of EN31 tool steel, in: Procedia Material Science 3rd International Conference on Materials Processing and Characterisation (ICMPC), vol. 6, 2014, 741–751.
  • [19] S.S. Baraskar, S.S. Banwait, S.C. Laroiya, Multiobjective optimization of electrical discharge machining process using a hybrid method, Mater. Manuf. Process. 28 (4) (2013) 348–354.
  • [20] M. Hakamada, T. Furuta, Y. Chino, Y. Chen, H. Kusuda, M. Mabuchi, Life cycle inventory study on magnesium alloy substitution in vehicles, Energy 32 (8) (2007) 1352–1360.
  • [21] S. Fu, Q. Li, X. Jing, Q. Zhang, Z. Chen, W. Liu, Review on research and development of heat resistant magnesium alloy, in: Proceedings of 2012 International Conference on Mechanical Engineering and Material Science, 2012, 611–614.
  • [22] F. Witte, The history of biodegradable magnesium implants: a review, Acta Biomater. 6 (2010) 1680–1692.
  • [23] N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R. Willumeit, K.U. Kainer, F. Feyerabend, Magnesium alloys as implant materials – principles of property design for Mg–RE alloys, Acta Biomater. 6 (5) (2010) 1714–1725.
  • [24] G.E.P. Box, D.W. Behnken, Some new three level designs for the study of variables quantitative, Technometrics 2 (4) (1960) 455–475.
  • [25] P. Savsani, V. Savsani, Passing vehicle search (PVS): a novel metaheuristic algorithm, Appl. Math. Model. 000 (2015) 1–28.
  • [26] ‘‘Electric Discharge Machines – Sparkonix (India) Pvt. Ltd.’’ [online]. Available: http://sparkonix.com/electric-discharge-machines/#1474418255848-26b4f163-7fcc (accessed: 08.06.17].
  • [27] K. Tsai, P. Wang, Semi-empirical model of surface finish on electrical discharge machining, Int. J. Mach. Tools Manuf. 41 (10) (2001) 1455–1477.
  • [28] M. Bielut, Osyczka, J. Zimny, J. Zajac, An approach to identification and multicriterion optimization of EDM processe, in: Proceeding in 23rd International Journal of Machine Tool Design and Research Conference, 1982, 291–296.
  • [29] J.H. Zhang, T.C. Lee, W.S. Lau, Study on the electro-discharge machining of a hot pressed aluminum oxide based ceramic, J. Mater. Process. Technol. 63 (1997) 908–912.
  • [30] P.C. Pandey, S.T. Jilani, Electrical machining characteristics of cemented carbides, Wear 116 (1987) 77–88.
  • [31] T. Muthuramalingam, B. Mohan, A review on influence of electrical process parameters in EDM process, Arch. Civ. Mech. Eng. 15 (1) (2015) 87–94.
  • [32] R. Karthikeyan, P.R. Lakshmi Narayanan, R.S. Naagarazan, Mathematical modelling for electric discharge machining of aluminium–silicon carbide particulate composites, J. Mater. Process. Technol. 87 (1999) 59–63.
  • [33] H.K. Kansal, S. Singh, P. Kumar, Parametric optimization of powder mixed electrical discharge machining by response surface methodology, J. Mater. Process. Technol. 169 (3) (2005) 427–436.
  • [34] B.K. Raghunath, L. Arunkumar, Electro discharge machining characteristics of Mg/SiCP metal matrix composites by powder metallurgy (P/M) techniques, Int. J. Eng. Technol. 5 (2013) 4332–4338.
  • [35] S.S. Habib, Study of the parameters in electrical discharge machining through response surface methodology approach, Appl. Math. Model. 33 (2009) 4397–4407.
  • [36] S. Sivasankar, R. Jeyapaul, Application of grey entropy and regression analysis for modelling and prediction on tool materials performance during EDM of hot pressed ZrB2 at different duty cycles, Proc. Eng. Int. Conf. Model. Optim. Comput. 38 (2012) 3977–3991.
  • [37] ‘‘CONTURA G2.’’ [online]. Available: https://www.zeiss.co.in/ metrology/products/systems/bridge-type-cmms/contura-g2. html [accessed: 08.06.17].
  • [38] R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, 2016.
  • [39] G. Box, K. Wilson, On the experimental attainment of optimum conditions, J. R. Stat. Soc. Ser. A 13 (1951) 1–45.
  • [40] F. Glover, Future Paths for Integer Programming and links to artificial intelligence, Comput. Oper. Res. 13 (5) (1986) 533– 549.
  • [41] M. Gen, R. Cheng, Genetic Algorithms and Engineering Optimization, Wiley, 1999.
  • [42] E. Bonabeau, M. Dorigo, G. Theraulaz, Inspiration for optimization from social insect behaviour, Nature 406 (2000) 39–42.
  • [43] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, 39–43.
  • [44] K. Ponappa, S. Aravindan, P.V. Rao, J. Ramkumar, M. Gupta, The effect of process parameters on machining of magnesium nano alumina composites through EDM, Int. J. Adv. Manuf. Technol. 46 (2010) 1035–1042.
  • [45] R.K. Bhuyan, B.C. Routara, A.K. Parida, A.K. Sahoo, Parametric optimization of Al–SiC 12% metal matrix composite machining by electrical discharge machine, in: 5th International & 26th All India Manufacturing Technology, Design and Research Conference, 2014.
  • [46] T. Ramprabhu, et al., Multi-objective optimization of EDM process parameters by using Passing Vehicle Search (PVS) algorithm, Defect Diff. Forum 382 (2018) 138–146.
  • [47] R.T. Marler, J.S. Arora, Survey of multi-objective optimization methods for engineering, Struct. Multidiscipl. Optim. 26 (2014) 369–395.
  • [48] K.A. Proos, G.P. Steven, O.M. Querin, Y.M. Xie, Multicriterion evolutionary structural optimization using the weighting and the global criterion methods, AIAA J. 39 (10) (2001) 2006–2012.
  • [49] N. Riquelme, C. Von Lucken, B. Baran, Performance metrics in multi-objective optimization, in: Latin American Computing Conference (CLEI), 2015, 1–11.
  • [50] R. Cheng, M. Li, Y. Tian, X. Zhang, S. Yang, Y. Jin, X. Yao, Benchmark Functions for CEC'2017 Competition on Evolutionary Many-Objective Optimization, 2017, 1–20.
  • [51] E. Zitzler, D. Brockhoff, L. Thiele, The hypervolume indicator revisited: on the design of pareto-compliant indicators via weighted integration, Evol. Multi-Criter. Optim. 4403 (2007) 862–876.
  • [52] A. Auger, J. Bader, D. Brockhoff, E. Zitzler, Hypervolume- based multiobjective optimization: theoretical foundations and practical implications, Theor. Comput. Sci. 425 (2012) 75– 103.
  • [53] J. Schott, Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization, DTIC Document, Technical Report, 1995.
  • [54] N. Srinivas, K. Deb, Muilti objective optimization using nondominated sorting in genetic algorithms, Evol. Comput. 2 (3) (1995) 221–248.
  • [55] M. Laumanns, L. Thiele, K. Deb, E. Zitzler, Combining convergence and diversity in evolutionary multiobjective optimization, Evol. Comput. 10 (3) (2002) 263–282.
  • [56] A. Solow, S. Polasky, J. Broadus, On the measurement of biological diversity, J. Environ. Econ. Manag. 24 (1) (1993) 60–68.
  • [57] T. Ulrich, J. Bader, L. Thiele, Defining and optimizing indicator-based diversity measures in multiobjective search, in: Parallel Problem Solving from Nature, PPSN XI, 2010, 707– 717.
  • [58] H. Wang, Y. Jin, X. Yao, Diversity assessment in many-objective optimization, IEEE Trans. Cybern. 47 (6) (2017) 1510– 1522.
  • [59] D. Trauth, F. Klocke, D. Welling, M. Terhorst, P. Mattfeld, A. Klink, Investigation of the surface integrity and fatigue strength of Inconel 718 after wire EDM and machine hammer peening, Int. J. Mater. Form. 9 (5) (2016) 635–651.
  • [60] P. Sharma, D. Chakradhar, S. Narendranath, Modeling and optimization of WEDM performance attributes of Inconel 706 superalloy using RSM-based PSO approach, in: Conference Paper, 2016, 181–194.
  • [61] P. Bhardwaj, B. Dasgupta, K. Deb, Modeling pareto-optimal set using B-spline basis functions, Eng. Optim. 46 (7) (2004) 912–938.
  • [62] S. Jiang, Y.S. Ong, J. Zhang, L. Feng, Consistencies and contradictions of performance metrics in multiobjective optimization, IEEE Trans. Cybern. 44 (12) (2014) 2391–2404.
  • [63] T. Okabe, Y. Jin, B. Sendhoff, A critical survey of performance indices for multi-objective optimisation, in: Congress on Evolutionary Computation, 2003 (CEC'03), vol. 2, 2004, 878– 885.
  • [64] X. Blasco, J.M. Herrero, J. Sanchis, M. Martínez, A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization, Inform. Sci. 178 (20) (2008) 3908–3924.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67b76b9c-8c10-4fac-bce3-36a8c514d930
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.