Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The beta regression model (BRM) is a well-known approach to modeling a response variable that has a beta distribution. The maximum likelihood estimator (MLE) does not produce accurate results for the BRM when the data has a high degree of multicollinearity. We propose a one-parameter beta Liu estimator (OPBLE) for the BRM to tackle the weaknesses of the available Liu estimator in dealing with the issue of multicollinearity. Using the mean square error (MSE), we analytically show that the proposed estimator performs more efficiently than the MLE, beta ridge regression estimator (BRRE), and beta Liu estimator (BLE). We conduct a simulation study and use two practical examples to investigate the performance of the OPBLE. Using the findings from the simulations and empirical studies, we demonstrate the superiority of the proposed estimator over the MLE, BRRE, and BLE in the presence of multicollinearity in the regressors.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
21--43
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- Department of Statistics, University of Sargodha, Sargodha, Pakistan
autor
- Department of Statistics, University of Sargodha, Sargodha, Pakistan
autor
- Department of Statistics, University of Sargodha, Sargodha, Pakistan
autor
- Department of Statistics, The Women University, Multan, Pakistan
Bibliografia
- [1] Abonazel, M. R., Algamal, Z. Y., Awwad, F. A., and Taha, I. M. A new two-parameter estimator for beta regression model: method, simulation, and application. Frontiers in Applied Mathematics and Statistics 7 (2022), 780322.
- [2] Abonazel, M. R., Dawoud, I., Awwad, F. A., and Lukman, A. F. Dawoud–Kibria estimator for beta regression model: simulation and application. Frontiers in Applied Mathematics and Statistics 8 (2022), 775068.
- [3] Akram, M. N., Amin, M., Elhassanein, A., and Ullah, M. A. A new modified ridge-type estimator for the beta regression model: simulation and application. AIMS Math 7, 1 (2022), 1035–1057.
- [4] Algamal, Z. Y., and Abonazel, M. R. Developing a Liu-type estimator in beta regression model. Concurrency and Computation: Practice and Experience 34, 5 (2022), e6685.
- [5] Amin, M., Akram, M. N., and Majid, A. On the estimation of Bell regression model using ridge estimator. Communications in Statistics-Simulation and Computation 52, 3 (2023), 854–867.
- [6] Amin, M., Ashraf, H., Bakouch, H. S., and Qarmalah, N. James Stein estimator for the beta regression model with application to heat-treating test and body fat datasets. Axioms 12, 6 (2023), 526.
- [7] Amin, M., Qasim, M., Afzal, S., and Naveed, K. New ridge estimators in the inverse Gaussian regression: Monte Carlo simulation and application to chemical data. Communications in Statistics-Simulation and Computation 51, 10 (2022), 6170–6187.
- [8] Asar, Y., and Genç, A. A note on some new modifications of ridge estimators. Kuwait Journal of Science 44, 3 (2017), 75–82.
- [9] Dorugade, A. V., and Kashid, D. N. Alternative method for choosing ridge parameter for regression. Applied Mathematical Sciences 4, 9 (2010), 447–456.
- [10] Dünder, E., and Cengiz, M. A. Model selection in beta regression analysis using several information criteria and heuristic optimization. Journal of New Theory, 33 (2020), 76–84.
- [11] Farebrother, R. W. Further results on the mean square error of ridge regression. Journal of the Royal Statistical Society. Series B (Methodological) 38, 3 (1976), 248–250.
- [12] Ferrari, S., and Cribari-Neto, F. Beta regression for modelling rates and proportions. Journal of Applied Statistics 31, 7 (2004), 799–815.
- [13] Hoerl, A. E., and Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 1 (1970), 55–67.
- [14] Hubert, M. H., and Wijekoon, P. Improvement of the Liu estimator in linear regression model. Statistical Papers 47, 3 (2006), 471–479.
- [15] Karlsson, P., Månsson, K., and Kibria, B. M. G. A Liu estimator for the beta regression model and its application to chemical data. Journal of Chemometrics 34, 10 (2020), e3300.
- [16] Kejian, L. A new class of blased estimate in linear regression. Communications in Statistics-Theory and Methods 22, 2 (1993), 393–402.
- [17] Kibria, B. M. G. Performance of some new ridge regression estimators. Communications in Statistics-Simulation and Computation 32, 2 (2003), 419–435.
- [18] Kibria, B. M. G. Some Liu and ridge-type estimators and their properties under the ill-conditioned Gaussian linear regression model. Journal of Statistical Computation and Simulation 82, 1 (2012), 1–17.
- [19] Lemonte, A. J., Ferrari, S. L. P., and Cribari-Neto, F. Improved likelihood inference in Birnbaum–Saunders regressions. Computational Statistics & Data Analysis 54, 5 (2010), 1307–1316.
- [20] Liu, X.-Q. Improved Liu estimator in a linear regression model. Journal of Statistical Planning and Inference 141, 1 (2011), 189–196.
- [21] Lukman, A. F., Kibria, B. G., Ayinde, K., and Jegede, S. L. Modified one-parameter Liu estimator for the linear regression model. Modelling and Simulation in Engineering 2020 (2020), 9574304.
- [22] Månsson, K. On ridge estimators for the negative binomial regression model. Economic Modelling 29, 2 (2012), 178–184.
- [23] Månsson, K. Developing a Liu estimator for the negative binomial regression model: method and application. Journal of Statistical Computation and Simulation 83, 9 (2013), 1773–1780.
- [24] Månsson, K., and Shukur, G. On ridge parameters in logistic regression. Communications in Statistics-Theory and Methods 40, 18 (2011), 3366–3381.
- [25] Månsson, K., and Shukur, G. A Poisson ridge regression estimator. Economic Modelling 28, 4 (2011), 1475–1481.
- [26] Mustafa, S., Amin, M., Akram, M. N., and Afzal, N. On the performance of link functions in the beta ridge regression model: Simulation and application. Concurrency and Computation: Practice and Experience 34, 18 (2022), e7005.
- [27] Pirmohammadi, S., and Bidram, H. On the Liu estimator in the beta and Kumaraswamy regression models: A comparative study. Communications in Statistics-Theory and Methods 51, 24 (2022), 8553–8578.
- [28] Prater, N. H. Estimate gasoline yields from crudes. Petroleum Refiner 35, 5 (1956), 236–238.
- [29] Qasim, M., Amin, M., and Amanullah, M. On the performance of some new Liu parameters for the gamma regression model. Journal of Statistical Computation and Simulation 88, 16 (2018), 3065–3080.
- [30] Qasim, M., Kibria, B. M. G., Månsson, K., and Sjölander, P. A new Poisson Liu regression estimator: method and application. Journal of Applied Statistics 47, 12 (2020), 2258–2271.
- [31] Qasim, M., Månsson, K., and Kibria, B. M. G. On some mean square errors: method, simulation and application. Journal of Statistical Computation and Simulation 91, 9 (2021), 1699–1712.
- [32] Schaefer, R. L., Roi, L. D., and Wolfe, R. A. A ridge logistic estimator. Communications in Statistics-Theory and Methods 13, 1 (1984), 99–113.
- [33] Seifollahi, S., Bevrani, H., and Albalawi, O. Reducing bias in beta regression models using jackknifed Liu-type estimators: Applications to chemical data. Journal of Mathematics 2024, 1 (2024), 6694880.
- [34] Trenkler, G., and Toutenburg, H. mean square error matrix comparisons between biased estimators – an overview of recent results. Statistical papers 31, 1 (1990), 165–179.
- [35] Varathan, N., and Wijekoon, P. Logistic Liu estimator under stochastic linear restrictions. Statistical Papers 60, 3 (2019), 945–962.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67b64ee1-3113-4923-87f2-7714facc82d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.