PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of biological nitrogen fixation by genetically characterized local strains of cyanobacteria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The cyanobacteria are an extremely varied group of gram-negative bacteria with different chemical and physical features. Phycocyanin is a pigment found in every member of this group. It helps with the process of converting atmospheric nitrogen into organic nitrogen, specifically ammonia (NH3). Two different cyanobacteria species were studied for their ability to fix organic nitrogen in order to achieve the goals of this research. The strain of Crinalium magnium (Oscillatonales Oscillatonales) that does not cause heterocytosis and the strain of Fischerella muscicola SAG 1427-1 that does produce heterocytosis are the two strains that in question. In the course of the investigation, it was discovered that both categories of organisms have the ability to fix nitrogen from organic matter. In terms of the fixation of organic nitrogen, the findings revealed that the strain F. muscicola had a considerable advantage (563 mg/l) when compared to the strain C. magnium, which had a value of 395 mg/l when cultivated in the medium Chu 10, which is devoid of nitrogen. The findings also demonstrated that the F. muscicola strain significantly outperformed the C. magnium strain. When compared to the carbohydrates content (480 mg/L) and the protein content (465 mg/l) of the strain C. magnium, it was observed that the value of the carbohydrates content (540 mg/l) and the protein content (505 mg/l) for the strain F. muscicola increased after 15 days in the medium Chu 10, which is nitrogen-free. This was the case when comparing the two strains. In contrast to the strain of C. magnium, this was demonstrated to be the case.
Rocznik
Strony
257--263
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Biology, College of Education for Pure Science, University of Mosul, Mosul, Iraq
  • Department of Biology, College of Education for Pure Science, University of Mosul, Mosul, Iraq
  • Department of Biology, College of Education for Pure Science, University of Mosul, Mosul, Iraq
  • Department of Biology, College of Education for Pure Science, University of Mosul, Mosul, Iraq
Bibliografia
  • 1. Abdulrazzaq, A. H., Al_Shahery, Y., & Mohammed, A. J. (2020). Genetic expression of the nif H gene genera of isolated cyanobacteria from northern Iraq. Biochemical & Cellular Archives, 20, 3849–3854.
  • 2. Al-Asady, I. N. (2023). Antibacterial activity of Spirulina platensis on some pathogenic bacteria. Biomedicine, 43(5), 1508–1513. https://doi.org/10.51248/.v43i5.3257
  • 3. Al-Asady, I. N., Mohammed, M. A., Saeed, Y. S., & AL-Rubaii, B. A. (2023). Bioenergy production from bacteria (Methanogens). Bionatura, 8(1), 1–4. http://dx.doi.org/10.21931/RB/2023.08.01.62
  • 4. Al-Humairi, R. M., Muhsin, H. Y., & Ad’hiah, A. H. (2022). Severity of coronavirus disease 19: a profile of inflammatory markers in Iraqi patients. Malaysian Journal of Medicine & Health Sciences, 18(1), 91–98.
  • 5. Al-Khafaji, Z. H. (2022). Antifungal activity and qualitative phytochemical analysis of green alga Ulothrix sp. Bionatura, 7(3), 1–5. http://dx.doi.org/10.21931/RB/2022.07.03.47
  • 6. Al-Khafaji, Z. H. (2023). The antagonistic effect of Anabaena circinalis on some dermatophytes. Biomedicine, 43(4), 1261–1265. https://doi.org/10.51248/.v43i4.3026
  • 7. AL-Khafaji, Z. H., & Dwaish, A. S. (2020). Molecular detection of toxogenic cyanobacteria isolated from Tigris river in Baghdad city–Iraq. Indian Journal of Forensic Medicine & Toxicology, 14(2), 446–450. https://doi.org/10.37506/ijfmt.v14i2.2832
  • 8. Al-Khafaji, Z. H., & Saeed, Y. S. (2024). Investigate the Antimicrobial Activity of Methanolic Extract of Cladophora glomerata. Journal of Communicable Diseases, 56(1), 8–12. https://doi.org/10.24321/0019.5138.202402
  • 9. Bassi, A. G. H., & Al-Rubaii, B. A. L. (2024). Detection of Pyocin S and the effects of lactobacillus acidophilus cell-free supernatants on multi-drug resistant pseudomonas aeruginosa isolated from patients of Baghdad hospitals. Journal of Communicable Diseases. 56(1), 135–144. https://doi.org/10.24321/0019.5138.202418
  • 10. Du, J., Li, L., & Zhou, S. (2019). Microbial production of cyanophycin: from enzymes to biopolymers. Biotechnology advances, 37(7), 107400. https://doi.org/10.1016/j.biotechadv.2019.05.006
  • 11. Dubey, S. K., Vyas, P., Tiwari, P., Viswas, A. J., & Bajpai, S. P. (2019). Bioremediation of industrial effluent using cyanobacterial species: Phormidium mucicola and Anabaena aequalis. Annual Research & Review in Biology, 31(1), 1–8. https://doi.org/10.9734/ARRB/2019/v31i130037
  • 12. Esteves-Ferreira, A. A., Cavalcanti, J. H. F., Vaz, M. G. M. V., Alvarenga, L. V., NunesNesi, A., & Araújo, W. L. (2017). Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genetics and Molecular Biology, 40, 261–275. https://doi.org/10.1590/1678-4685-GMB-2016-0050
  • 13. Hassoon, A. H. (2022). Evaluating the role of mitochondrial DNA quantification inblastocyst transfers potential. In AIP Conference Proceedings 2386(1). AIP Publishing.
  • 14. Heddam, S., Sanikhani, H., & Kisi, O. (2019). Application of artificial intelligence to estimate phycocyanin pigment concentration using water quality data: a comparative study. Applied Water Science, 9(7), 164. 64 https://doi.org/10.1007/s13201-019-1044-3
  • 15. Inomura, K., Bragg, J., & Follows, M. J. (2017). A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. The ISME journal, 11(1), 166–175.
  • 16. Khalaf, S.A., Shartooh, S.M., and Shihan, M.A. (2025). Assessing the loading capacity of walnut peels as a nanobiomass for the biosorption of certain heavy metals from wastewater. Journal of Ecological Engineering.26(2), 169–182. https://doi.org/10.12911/22998993/196879
  • 17. Mohammed, D. Y., Al-Maoula, M. S., Al-Khafaji, Z. H., & Dwaish, A. S. (2024). Effect of hot alcoholic extract of algae, Enteromorpha ralfsii on the mortality and emergence rate of housefly musca domestica. Intl J Agric Biol, 31(6), 417‒424. https://doi.org/10.17957/IJAB/15.2159
  • 18. Prescott, G. W. (1973). Algae of Western Great Lake Area, WMC Brown Company.
  • 19. Riemann, L., Farnelid, H., & Steward, G. F. (2010). Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquatic Microbial Ecology, 61(3), 235–247. https://doi.org/10.3354/ame01431
  • 20. Rosales Loaiza, N., Vera, P., Aiello-Mazzarri, C., & Morales, E. (2016). Comparative growth and biochemical composition of four strains of Nostoc and Anabaena (Cyanobacteria, Nostocales) in relation to sodium nitrate. Acta Biológica Colombiana, 21(2), 347–354.
  • 21. Saeed Al-Shakarchi, H. K., & Al-Shahery, Y. J. (2020). Evaluation of Arthrospira sp. growth ability salts on heavy metal salts and their effect on some cellular components periodica Tche Quimica. 17(34), 667–677. https://doi.org/10.52571/ptq.v17.n34.2020.691
  • 22. Saleh, T., Hashim, S., Malik, S. N., & Al-Rubaii, B. A. L. (2020). The impact some of nutrients on swarming phenomenon and detection the responsible gene RsbA in clinical isolates of Proteus mirabilis. Int J Pharm Sci Res, 1(6), 437–444. https://doi.org/10.26452/ijrps.v11i2.1989
  • 23. Taha, A.M.A., Shartooh, S.M., and Jasim, A.H. (2023). Limnological properties of euphrates river in Al-anbar province, Iraq. Health Education and Health Promotion. 11(3), 499–505. https://doi.org/10.58209/hehp.11.3.499
  • 24. Al-shahery, I.Y. and Al-Asady, I.N. (2021a).Identification of saturated and unsaturated fatty acids produced by Chlorella vulgaris as a potential candidate for biodiesel production. Tropical Journal of Natural Product Research, February; 5(2), 238–242. https://doi.org/10.26538/tjnpr/v5i2.4
  • 25. AL –Shahery, Y.J.I., Al- Asady, I.N. (2021b). Molasses as a new nutrition medium for Scenedsmus quadricauda growth and production of some bio compounds. Revista Bionatura 6(4), 2202–2208. tps://doi.org/10.21931/RB/2021.06.04.11
  • 26. Zheng, X. Y., & O’Shea, E. K. (2017). Cyanobacteria maintain constant protein concentration despite genome copy-number variation. Cell reports, 19(3), 497–504. http://dx.doi.org/10.1016/j.celrep.2017.03.067
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67ae49b5-4f4c-4df1-8d32-f1145741c5ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.