PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rules for efficient development of multiagent systems for continuous process control

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zasady efektywnego rozwoju systemów wieloagentowych do ciągłej kontroli procesów
Języki publikacji
EN
Abstrakty
EN
This paper presents a set of rules for a development of multiagent systems (MAS) for continuous process control. The purpose of presented guidelines is to provide a set of good practices that can be used to simplify development of the MAS, mostly during the design of its architecture and communication between agents. Prepared agent-based system based on provided rules is then verified in dissolved oxygen control for bioreactor aeration control system simulation.
PL
Ta praca prezentuje zbiór zasad dla rozwijania systemów wieloagentowych (MAS) dedykowanych sterowaniu procesami ciągłymi. Zaprezentowane wskazówki mają na celu utworzenie zbioru dobrych praktyk, które mogę być wykorzystane do uproszczenia tworzenia MAS, przede wszystkim na etapach projektowania architektury systemu i sposobu komunikacji pomiędzy agentami. System agentowy przygotowany na podstawie zamieszczonych wskazówek jest następnie poddany weryfikacji podczas sterowania procesem napowietrzania bioreaktora.
Rocznik
Strony
225--229
Opis fizyczny
Bibliogr. 22 poz., rys.,tab.
Twórcy
  • Silesian University of Technology, Department of Automatic Control and Robotics, 44-100, Gliwice
  • Silesian University of Technology, Department of Automatic Control and Robotics, 44-100, Gliwice
Bibliografia
  • [1] L. Ding, Q. Han, X. Ge and X. Zhang, An Overview of Recent Advances in Event-Triggered Consensus of Multiagent Systems, IEEE Transactions on Cybernetics, 48 (2018), no. 4, 1110-1123, DOI: 10.1109/TCYB.2017.2771560.
  • [2] M. Sahal, T. Agustinah, A. Jazidie, and H. Du, Distributed Velocity Control in Cooperative Multi-Agent Moving Source Seeking, Przegląd Elektrotechniczny, 99 (2023), no. 8, 224– 230, DOI: 10.15199/48.2023.08.40.
  • [3] P. Qaderi-Baban, M.B. Menhaj, M. Dosaranian-Moghadam and A. Fakharian, Intelligent multi-agent system for DC microgrid energy coordination control, Bulletin of the Polish Academy of Sciences Technical Sciences, 67 (2019), no. 4, 741-748, DOI: 10.24425/bpasts.2019.130183.
  • [4] R. Sikorski, Flexible multi-agent system for mobile robot group control, Przegląd Elektrotechniczny, 1 (2019), no. 12, 254– 258,DOI: 10.15199/48.2019.12.57.
  • [5] S. Bussmann and K. Schild, An agent-based approach to the control of flexible production systems, in ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597), Antibes-Juan les Pins, France 2001, vol.2, pp. 481-488, DOI: 10.1109/ETFA.2001.997722.
  • [6] T. Arai, Y. Aiyama, Y. Maeda, M. Sugi, and J. Ota, Agile Assembly System by ‘Plug and Produce,’ CIRP Annals, 49 (2000), no. 1, 1–4, DOI: 10.1016/S0007-8506(07)62883-2.
  • [7] M. Metzger and G. Polakow, A Survey on Applications of Agent Technology in Industrial Process Control, IEEE Transactions on Industrial Informatics, 7 (2011), no. 4, 570-581, DOI: 10.1109/TII.2011.2166781.
  • [8] M. Francisco, Y. Mezquita, S. Revollar, P. Vega and Juan F. De Paz, Multi-agent distributed model predictive control with fuzzy negotiation, Expert Systems with Applications, 129 (2019), pp. 68-83, DOI:10.1016/j.eswa.2019.03.056.
  • [9] J. Pospiech, Multi-Agent System for Closed Loop Model-Based Control of Dissolved Oxygen Concentration, in 2021 25th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 2021, 145-149, DOI: 10.1109/MMAR49549.2021.9528445.
  • [10] A. J. N van Breemen and T. J. A de Vries, Design and implementation of a room thermostat using an agent-based approach, Control Engineering Practice, 9 (2001), no. 3, 233- 248, DOI:10.1016/S0967-0661(00)00111-8.
  • [11] Y. N. Guo, J. Cheng, D. Gong, and J. Zhang, A Novel Multiagent Based Complex Process Control System and Its Application, in Intelligent Control and Automation: International Conference on Intelligent Computing, ICIC 2006, Kunming, China, 319–330. DOI: 10.1007/978-3-540-37256-1_39.
  • [12] G. Polaków, JADE environment performance evaluation for agent-based continuous process control algorithm, in 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 2016, 571-576, DOI: 10.1109/MMAR.2016.7575199
  • [13] L. Ribeiro, S. Karnouskos, P. Leitão, J. Barbosa and M. Hochwallner, Performance Assessment Of The Integration Between Industrial Agents And Low-Level Automation Functions, in 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), Porto, Portugal, 2018, 121-126, DOI: 10.1109/INDIN.2018.8471927
  • [14] S. Karnouskos, P. Leitao, L. Ribeiro and A. W. Colombo, Industrial Agents as a Key Enabler for Realizing Industrial Cyber-Physical Systems: Multiagent Systems Entering Industry 4.0, IEEE Industrial Electronics Magazine, 14 (2020), no. 3, 18- 32, DOI: 10.1109/MIE.2019.2962225.
  • [15] S. Karnouskos and P. Leitão, Key Contributing Factors to the Acceptance of Agents in Industrial Environments, IEEE Transactions on Industrial Informatics, 13 (2017), no. 2, 696– 703, DOI: 10.1109/TII.2016.2607148.
  • [16] V. Mařík and J. Lažanský, Industrial applications of agent technologies, Control Engineering Practice, 15 (2007), no. 11, 1364-1380, DOI:10.1016/j.conengprac.2006.10.001.
  • [17] G. Polaków, P. Laszczyk and M. Metzger, Agent-based approach to model-based dynamically reconfigurable control algorithm, in 2015 20th International Conference on Process Control (PC), Strbske Pleso, Slovakia, 2015, 375-380, DOI: 10.1109/PC.2015.7169992.
  • [18] D. Choiński, W. Nocoń and M. Metzger, Multi-Agent System for Hierarchical Control with Self-organising Database, in Agent and Multi-Agent Systems: Technologies and Applications. KESAMSTA 2007, Wroclaw, Poland, 2007, 655-664. DOI:10.1007/978-3-540-72830-6_68.
  • [19] V. D. Chemalamarri, M. Abolhasan, and R. Braun, An agentbased approach to disintegrate and modularise Software Defined Networks controller, in 2022 IEEE 47th Conference on Local Computer Networks (LCN), Sep. 2022, 407–413. DOI: 10.1109/LCN53696.2022.9843585.
  • [20] S. T. Arzo, D. Scotece, R. Bassoli, F. Granelli, L. Foschini, and F. H. P. Fitzek, A New Agent-Based Intelligent Network Architecture, IEEE Communications Standards Magazine, 6 (2022), no. 4, 74–79, DOI: 10.1109/MCOMSTD.0001.2100053.
  • [21] M. Chen, S. D. J. McArthur, I. Kockar, and J. Pitt, Evaluating a MAS architecture for flexible distribution power flow management, in 2015 18th International Conference on Intelligent System Application to Power Systems (ISAP), Sep. 2015, 1–6. doi: 10.1109/ISAP.2015.7325531.
  • [22] FIPA Communicative Act Library Specification URL: http://www.fipa.org/specs/fipa00037/
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67a11d0f-36bd-4ee2-8220-3c7122a07428
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.