PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanocellulose from agricultural waste as an emerging nanotechnology material for nanotechnology applications – an overview

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nanoceluloza z odpadów rolniczych jako potencjalny materiał nanotechnologiczny
Języki publikacji
EN
Abstrakty
EN
It has been shown that in the last decades nanotechnology plays a key role not only in science but more and more of ten in industry as well. Recent research has shown that agricultural waste is a possible feedstock to produce nanocellulose which can be used for diff erent applications, such as a biosensor, semiconductor and reinforcing agent. The use of agro-waste as a precursor not only off ers advantages for raw material costs, but also for the climate, low processing costs, availability and convenience. It also helps to address environmental issues, such as illness, foul odor and concerns with indoor use. Diff erent processes, such as chemical treatment, mechanical treatment and chemo-mechanical treatment, have been used to extract nanocellulose from agro-waste. This article highlights the latest technologies used to acquire agro-waste nanocellulose, as well as existing advances in and applications of nanocellulose technologies.
PL
W ostatnich dziesięcioleciach nanotechnologia odgrywa kluczową rolę nie tylko w nauce, ale coraz częściej także w przemyśle. Wyniki prowadzonych badań wskazują, że odpady rolnicze mogą stanowić potencjalny surowiec do produkcji nanocelulozy. Wiadomo, że nanoceluloza jest doskonałym materiałem do różnych zastosowań, m.in. jako biosensor, półprzewodnik i czynnik wzmacniający – włókna. Wykorzystanie agroodpadów jako surowca jest korzystne nie tylko ze względu na ich cenę, ale także ze względu na potencjalnie niewielki wpływ na klimat, niskie koszty i łatwość przetwarzania oraz dostępność. Niweluje również możliwe problemy wynikające z emisji nieprzyjemnych zapachów i ich negatywnego wpływu na zdrowie organizmów żywych. Do ekstrakcji nanocelulozy z agroodpadów stosuje się procesy obróbki chemicznej, obróbki mechanicznej i obróbki chemiczno-mechanicznej. Przedstawiono najnowsze technologie wykorzystywane do pozyskiwania nanocelulozy zagroodpadów, a także dotychczasowe postępy i zastosowania technologii zużyciem nanocelulozy.
Czasopismo
Rocznik
Strony
157--168
Opis fizyczny
Bibliogr. 81 poz., rys. kolor.
Twórcy
  • Universiti Kebangsaan Malaysia, Solar Energy Research Institute (SERI), 43600 Bangi, Selangor, Malaysia
  • Universiti Kebangsaan Malaysia, Solar Energy Research Institute (SERI), 43600 Bangi, Selangor, Malaysia
  • National Defence University of Malaysia, Research Centre for Tropicalisation, Sungai Besi Camp, 57000 Kuala Lumpur, Malaysia
  • Universiti Kebangsaan Malaysia, Solar Energy Research Institute (SERI), 43600 Bangi, Selangor, Malaysia
  • Universiti Kebangsaan Malaysia, Solar Energy Research Institute (SERI), 43600 Bangi, Selangor, Malaysia
autor
  • Universiti Kebangsaan Malaysia, Solar Energy Research Institute (SERI), 43600 Bangi, Selangor, Malaysia
  • Universiti Kebangsaan Malaysia, Solar Energy Research Institute (SERI), 43600 Bangi, Selangor, Malaysia
autor
  • Universiti Kebangsaan Malaysia, Solar Energy Research Institute (SERI), 43600 Bangi, Selangor, Malaysia
  • Iran University of Science and Technology, Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Tehran 16846-13114, Iran
Bibliografia
  • [1] Nitu Sindhu, Shehrawat P.S., Bharat Singh: Annals of Agri Bio Research 2015, 20, 110.
  • [2] Dungani R., Karina M., Sulaeman A. et al.: Asian Journal of Plant Sciences 2016, 15 (1/2), 42. http://dx.doi.org/10.3923/ajps.2016.42.55
  • [3] Habibi Y., Lucia L.A., Rojas O.J.: Chemical Reviews 2010, 110 (6), 3479. https://doi.org/10.1021/cr900339w
  • [4] Rani M.S.A., Rudhziah S., Ahmad A., Mohamed N.S.: Polymers 2014, 6 (9), 2371. https://doi.org/10.3390/polym6092371
  • [5] Ani F.N.: “Utilization of bioresources as fuels and energy generation” in: “Electric Renewable Energy Systems”, Elsevier Inc., pp. 140–155. ISBN 978-012804448-3.
  • [6] Xu C., Zhu S., Xing C. et al.: PLoS One 2015, 10 (4), e0122123. https://doi.org/10.1371/journal.pone.0122123
  • [7] Phiriyawirut M., Maniaw P. Open Journal of Polymer Chemistry 2012, 2 (2), 56.http://dx.doi.org/10.4236/ojpchem.2012.22007
  • [8] Khan G.M., Alam M.: Indian Journal of Fiber &Textile Research 2012, 37, 20.
  • [9] Norrrahim M.N.F., Ariffin H., Hassan M.A. et al.: International Journal of Nanotechnology 2019, 16 (11–12), 668. http://dx.doi.org/10.1504/IJNT.2019.107360
  • [10] Rani M.S.A., Ahmad A., Mohamed N.S.: Ionics 2018, 24 (3), 807. https://doi.org/10.1007/s11581-017-2235-2
  • [11] Cintil J.C., Lovely M., Sabu T.: Reviews on Advanced Materials Science 2014, 37, 20.
  • [12] Rani M.S.A., Mohammad M., Sua’it M.S. et al.: Polymer Bulletin 2020. https://doi.org/10.1007/s00289-020-03382-2
  • [13] Tapia-Blácido D.R., Maniglia B.C., Martelli-Tosi M., Passos V.F.: “Biopackaging” (Ed. Masuelli M.A.), CRC Press, 2017, p.192.
  • [14] Tan B.K., Ching Y.C., Poh S.C. et al.: Polymers 2015, 7 (11), 2205. https://doi.org/10.3390/polym7111509
  • [15] Najiha Badar S., Mohammad M., Emdadi Z., Yaakob Z.: Biofuels 2018. https://doi.org/10.1080/17597269.2018.1472978
  • [16] Nuruddin M., Chowdhury A., Haque S.A. et al.: Cellulose Chemistry and Technology 2011, 45 (5–6), 347.
  • [17] Zuin V.G., Ramin L.Z.: “Chemistry and Chemical Technologies in Waste Valorization” 2018, pp. 229–282.
  • [18] Mishra R.K., Sabu A., Tiwari S.K.: Journal of Saudi Chemical Society 2018, 22, 949. https://doi.org/10.1016/j.jscs.2018.02.005
  • [19] “The Synthetic Strategies for Unique Properties in Cellulose Nanocrystal Materials”.http://repository.lib.ncsu.edu/ir/bitstream
  • [20] Hubbe M.A., Rojas O.J., Lucia L.A., Sain M.: BioResources 2008, 3 (3), 929.
  • [21] Norrrahim M.N.F., Ariffin H., Yasim-Anuar T.A.T. et al.: IOP Conference Series: Materials Science and Engineering 2018, 368, 012034. https://doi.org/10.1088/1757-899X/368/1/012034
  • [22] Moon R.J.M., Martini A., Nairn J. et al.: Chemical Society Reviews 2011, 40, 3941. http://dx.doi.org/10.1039/c0cs00108b
  • [23] Clasen C., Kulicke W.M.: Progress in Polymer Science 2001, 26 (9), 1839. http://dx.doi.org/10.1016/S0079-6700(01)00024-7
  • [24] Varshney V.K., Naithani S.: “Cellulose fibers: Bio-and nano-polymer composites” (Eds. Kalia S., Kaith B.S., Kaur I.), Springer-Verlag, Berlin Heidelberg 2011, pp. 43–60. http://dx.doi.org/10.1007/978-3-642-17370-7
  • [25] Börjesson M., Westman G.: “Cellulose-Fundamental Aspects and Current Trends”, INTECH, 2015, pp. 159–191. https://doi.org/10.5772/61899
  • [26] Norrrahim M.N.F., Ariffin H., Yasim-Anuar T.A.T. et al.: Cellulose 2018, 25 (7), 3853. https://doi.org/10.1007/s10570-018-1859-3
  • [27] Kumar A., Negi Y.S., Choudhary V., Bhardwaj N.K.: Journal of Materials Physics and Chemistry 2014, 2 (1), 1. http://dx.doi.org/10.12691/jmpc-2-1-1
  • [28] Dos Santos R.M., Neto W.P.F., Silvério H.A. et al.: Industrial Crops and Products 2013, 50, 707.
  • [29] Wulandari W.T., Rochliadi A., Arcana I.M.: IOP Conference Series: Materials Science and Engineering 2016, 107, 012045. https://doi.org/10.1088/1757-899X/107/1/012045
  • [30] Lani N.S., Ngadi N., Johari A., Jusoh M.: Journal of Nanomaterials 2014, 2014, ID 702538. https://doi.org/10.1155/2014/702538
  • [31] Kampeerapappun P.: Journal of Metals, Materials and Minerals 2015, 25 (1), 19. http://dx.doi.org/10.14456/jmmm.2015.3
  • [32] Hornsby P., Mohamad M., McMullan C. et al.: “Nanocellulose reinforced polymers derived from banana tree and other fibre sources”, ECCM15–15th European Conference on Composite Materials, Venice, Italy, 24–28 June 2012.
  • [33] Zhang X., Han G., Jiang W. et al.: BioResources 2016, 11 (3), 6590. http://dx.doi.org/10.15376/biores.11.3.6590-6599
  • [34] Chen W., Yu H., Liu Y. et al.: Cellulose 2011, 18 (2), 433. http://dx.doi.org/10.1007/s10570-011-9497-z
  • [35] Saelee K., Yingkamhaeng N., Nimchua T., Sukyai P.: Proceedings of The 26th Annual Meeting of the Thai Society for Biotechnology and International Conference, Mae Fah Lunag University (School of Science) 2014, pp. 26–29.
  • [36] Jonoobi M., Oladi R., Davoudpour Y. et al.: Cellulose2015, 22 (2), 935. http://dx.doi.org/10.1007/s10570-015-0551-0
  • [37] Nasution, H. and Sitompul, S.: IOP Conference Series: Materials Science and Engineering 2017, 180 (1), 012007.
  • [38] Purkait B.S., Ray D., Sengupta S. et al.: Industrial & Engineering Chemistry Research 2011, 50 (2), 871. https://doi.org/10.1021/ie101797d
  • [39] Zain M., Fazelin N., Yusop M., Ahmad I.: Nutrition & Food Sciences 2016, 5 (1), 1.
  • [40] Klemm D., Kramer F., Moritz S. et al.: Angewandte Chemie International Edition 2011, 50, 5438. http://dx.doi.org/10.1002/anie.201001273
  • [41] Gardner D.J., Oporto G.S., Mills R., Samir M.A.S.A.: Journal of Adhesion Science and Technology 2008, 22 (5–6), 545. https://doi.org/10.1163/156856108X295509
  • [42] Johansson C., Bras J., Mondragon I. et al.: BioResources 2012, 7 (2), 2506. http://dx.doi.org/10.15376/biores.7.2.2506-2552
  • [43] Mashkour M., Rahimnejad M., Mashkour M., Soavi F.: Journal of Power Sources 2020, 478, 228822. https://doi.org/10.1016/j.jpowsour.2020.228822
  • [44] Wegner T.H.: “Cellulose Nanomaterials: The Sustainable Material of Choice for the 21st Century 2012”, Energy Efficiency and Renewable Energy, Sustainable Nanomaterials Workshop.
  • [45] Deepa B., Abraham E., Cherian B.M. et al.: Bioresource Technology 2011, 102 (2), 1988. http://www.scopus.com/inward/record.url?eid=2-s2.0-78650710292&partnerID=40&md5=ca3ad939fb6bd5634dfec2dfe38209c9
  • [46] Chen Y.W., Lee H.V., Abd Hamid S.B.: BioResources 2016, 11 (2), 4645.
  • [47] Zawawi D., Mohd Z., Angzzas S., Ashuvila M.A.: Journal of Applied Sciences 2014, 14 (12), 1355. http://dx.doi.org/10.3923/jas.2014.1355.1358
  • [48] Rani M.S.A., Ahmad A., Mohamed N.S.: Polymer Bulletin 2018, 75 (11), 5061. https://doi.org/10.1007/s00289-018-2320-3
  • [49] Ishola M.M., Millati R., Syamsiah S. et al.: Molecules 2012, 17 (12), 14995. https://doi.org/10.3390/molecules171214995
  • [50] She W.J., Burke L., Neimyer R. et al.: “Proceedings of the Conference on Design and Semantics of Form and Movement – Sense and Sensitivity, DeSForM 2017”. http://dx.doi.org/10.5772/intechopen.71109
  • [51] Lee K.Y., Aitomäki Y., Berglund L.A. et al.: Composites Science and Technology 2014, 105, 15. https://doi.org/10.1016/j.compscitech.2014.08.032
  • [52] Kalia S., Kaith B.S., Kaur I.: Polymer Engineering &Science 2009, 49 (7), 1253. https://doi.org/10.1002/pen.21328
  • [53] Einchhorn S.J., Dufresne A., Aranguren M.M. et al.: Journal of Materials Science 2010, 45, 1. http://dx.doi.org/10.1007/s10853-009-3874-0
  • [54] Habibi Y., Goffin A.L., Schiltz N. et al.: Journal of Materials Chemistry 2008, 18 (41), 5002. https://doi.org/10.1039/B809212E168 POLIMERY 2021, 66, nr 3
  • [55] Petersson L., Kvien I., Oksman K.: Composites Science and Technology 2007, 67 (11–12), 2535. http://dx.doi.org/10.1016/j.compscitech.2006.12.012
  • [56] Zoppe J.O., Peresin M.S., Habibi Y. et al.: ACS Applied Materials & Interfaces 2009, 1 (9), 1996. https://doi.org/10.1021/am9003705
  • [57] Bondeson D., Oksman K.: Composite Interfaces 2007, 14 (7–9), 617. https://doi.org/10.1163/156855407782106519
  • [58] Kvien I., Tanem B.S., Oksman K.: Biomacromolecules 2005, 6 (6), 3160. http://dx.doi.org/10.1021/bm050479t
  • [59] Dufresne A.: “Monomers, Polymers and Composites from Renewable Resources” (Eds. Belgacem M.N., Gandini A.), Elsevier 2008, Chapter 19, pp. 401—418. https://doi.org/10.1016/B978-0-08-045316-3.00019-3
  • [60] Helbert W., Cavaille J.Y., Dufresne A.: Polymer Composites 1996, 17 (4), 604. https://doi.org/10.1002/pc.10650
  • [61] Alemdar A., Sain M.: Composites Science and Technology 2008, 68 (2), 557. https://doi.org/10.1016/j.compscitech.2007.05.044
  • [62] Elazzouzi-Hafraoui S., Nishiyama Y., Putaux J.L. et al.: Biomacromolecules 2008, 9 (1), 57. http://dx.doi.org/10.1021/bm700769p
  • [63] Khattab M.M., Abdel-Hady N.A., Dahman Y.: “Cellulose-Reinforced Nanofibre Composites, Production, Properties and Applications”, Woodhead Publishing Series in Composites Science and Engineering 2017, pp. 483–516. https://doi.org/10.1016/B978-0-08-100957-4.00021-8
  • [64] Dong X.M., Kimura T., Revol J.F., Gray D.G.: Langmuir 1996, 12 (8), 2076. https://doi.org/10.1021/la950133b
  • [65] Morán J.I., Alvarez V.A., Cyras V.P., Vázquez A.: Cellulose 2008, 15 (1), 149. https://doi.org/10.1007/s10570-007-9145-9
  • [66] Araki J., Wada M., Kuga S.: Langmuir 2001, 17 (1), 21. http://dx.doi.org/10.1021/la001070m
  • [67] Bhatnagar A., Sain M.: Journal of Reinforced Plastics and Composites 2005, 24 (12), 1259. http://dx.doi.org/10.1177/0731684405049864
  • [68] Paralikar S.A., Simonsen J., Lombardi J.: Journal of Membrane Science 2008, 320 (1), 248. http://dx.doi.org/10.1016/j.memsci.2008.04.009
  • [69] Mangalam A.P., Simonsen J., Benight A.S.: Biomacromolecules 2009, 10 (3), 497. https://doi.org/10.1021/bm800925x
  • [70] Azizi Samir M.A.S., Alloin F., Sanchez J.Y. et al.: Macromolecules 2004, 37 (4), 1386. http://dx.doi.org/10.1021/ma030532a
  • [71] Morandi G., Heath L., Thielemans W.: Langmuir 2009, 25 (14), 8280. https://doi.org/10.1021/la900452a
  • [72] Bondeson D., Mathew A., Oksman K.: Cellulose 2006, 13 (2), 171. https://doi.org/10.1007/s10570-006-9061-4
  • [73] Filson P.B., Dawson-Andoh B.E.: Bioresource Technology 2009, 100 (7), 2259. https://doi.org/10.1016/j.biortech.2008.09.062
  • [74] Lavoine N., Desloges I., Dufresne A., Bras J.: Carbohydrate Polymers 2012, 90 (2), 735. https://doi.org/10.1016/j.carbpol.2012.05.026
  • [75] Eichhorn S.J.: Soft Matter 2011, 7 (2), 303. https://doi.org/10.1039/C0SM00142B
  • [76] Wang Y., Cao X., Zhang L.: Macromolecular Bioscience 2006, 6 (7), 524. https://doi.org/10.1002/mabi.200600034
  • [77] Salehudin M.H., Saleh E., Muhamad I.I., Mamat S.N.H.: International Conference on Agricultural and Food Engineering for Life (Cafei 2012), 26–28 November 2012, Putrajaya, Malaysia.
  • [78] Long L.Y., Weng Y.X., Wang Y.Z.: Polymers 2018, 10(6), 623. https://doi.org/10.3390/polym10060623
  • [79] Truong D.H., Dam M.S., Bujna E. et al.: Fuel 2021, 285, 119259. https://doi.org/10.1016/j.fuel.2020.119259
  • [80] Lin N., Dufresne A.: European Polymer Journal 2014, 59, 302. https://doi.org/10.1016/j.eurpolymj.2014.07.025
  • [81] Wang S., Lu A., Zhang L.: Progress in Polymer Science 2016, 53, 169. https://doi.org/10.1016/j.progpolymsci.2015.07.003
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-679e9122-4020-446a-9b30-44f9f0b69c62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.