PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Distilled Water and Kerosene as Dielectrics on Machining Rate and Surface Morphology of Al-6061 During Electricdischarge Machining

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electric Discharge Machining (EDM) is widely used for manufacturing complex metal parts. The machining parameters like dielectric fluid, electrode material, current, voltage and pulse rate during EDM are controlled to obtain desired Material Removal Rate (MRR) and it also affects the surface morphology of manufactured components. In this research, effect of changing machining parameters, dielectric fluid (distilled water and kerosene) and electrode materials (copper and graphite) on surface morphology of Al 6061 T6 alloy during EDM is investigated. It is observed that the distilled water reacts with the molten aluminum and produces deep pits / voids on the surface due to liberation of hydrogen gas. A micro crack network is seen radiating from the edge of these pits. It is believed that the very high thermal conductivity of distilled water is responsible for the micro crack network and reduced material removal rate when compared with non-reactive kerosene oil.
Twórcy
autor
  • Mechanical Engineering Department, University of Engineering and Technology Taxila, Pakistan
  • Mechanical Engineering Department, University of Engineering and Technology Taxila, Pakistan
autor
  • Mechanical Engineering Department, University of Engineering and Technology Taxila, Pakistan
  • Mechanical Engineering Department, University of Engineering and Technology Taxila, Pakistan
  • Institut für Metallformung, Technische Universität Bergakademie Freiberg, Bernhard-von-Cotta-Straße 4, 09599 Freiberg (Sachsen), Germany
Bibliografia
  • 1. Srinivasa Rao, P., K. Ramji, and B. Satyanarayana, Effect of wire EDM conditions on generation of re¬sidual stresses in machining of aluminum 2014 T6 alloy. Alexandria Engineering Journal, 2016. 55(2): 1077-1084.
  • 2. Jatti, V.S. and S. Bagane, Thermo-electric model¬ling, simulation and experimental validation of pow¬der mixed electric discharge machining (PMEDM) of BeCu alloys. Alexandria Engineering Journal, 2018. 57(2): 643-653.
  • 3. Giridharan, A. and G. Samuel, Investigation into erosion rate of AISI 4340 steel during wire electrical discharge turning process. Machining Science and Technology, 2018. 22(2): 287-298.
  • 4. Yue, X., et al., Thermal, mechanical and chemical material removal mechanism of carbon fiber re¬inforced polymers in electrical discharge machin¬ing. International Journal of Machine Tools and Manufacture, 2018. 133: 4-17.
  • 5. Mehmood, S., et al., Evaluation of Fatigue Behavior and Surface Characteristics of Aluminum Alloy 2024 T6 After Electric Discharge Machining. Journal of Materials Engineering and Performance, 2017. 26(10): 4910-4922.
  • 6. Mehmood, S., et al., Influence of electric discharge machining on fatigue limit of high strength alu¬minum alloy under finish machining. Journal of the Chinese Institute of Engineers, 2017. 40(2): 118-125.
  • 7. Nikhil Kumar, L.K., Harichand Tewatia, Rakesh Yadav, Comparative study for MRR on die-sink¬ing edm using electrode of copper & graphite. International Journal of Advanced Technology & Engineering Research, 2012. 2(2).
  • 8. Luis, C.J., I. Puertas, and G. Villa, Material re¬moval rate and electrode wear study on the EDM of silicon carbide. Journal of Materials Processing Technology, 2005. 164–165(0): 889-896.
  • 9. Jahan, M.P., Y.S. Wong, and M. Rahman, A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. Journal of Materials Processing Technology, 2009. 209(8): 3956-3967.
  • 10. Shabgard, M., M. Seyedzavvar, and S.N.B. Oliaei, Influence of Input Parameters on the Characteristics of the EDM Process. Strojniški vestnik – Journal of Mechanical Engineering, 2011. 57(09): 689-696.
  • 11. Ekmekci, B., Residual stresses and white layer in electric discharge machining (EDM). Applied Surface Science, 2007. 253(23): 9234-9240.
  • 12. Chakraborty, S., V. Dey, and S.K. Ghosh, A Review on the Use of Dielectric Fluids and their Effects in Electrical Discharge Machining Characteristics. Precision Engineering, 2015. 40: 1-6.
  • 13. Li, L., X.T. Wei, and Z.Y. Li, Surface integrity evo¬lution and machining efficiency analysis of W-EDM of nickel-based alloy. Applied Surface Science, 2014. 313(0): 138-143.
  • 14. Mehmood, S., et al., Determination of residual stress distribution in high strength aluminum alloy after edm. Advances in Science and Technology Research Journal, 2017. 11(1): 29-35.
  • 15. Zhang, Y., et al., Investigation on the influence of the dielectrics on the material removal characteristics of EDM. Journal of Materials Processing Technology, 2014. 214(5): 1052-1061.
  • 16. Zhang, Y., et al., Study of the recast layer of a sur¬face machined by sinking electrical discharge ma¬chining using water-in-oil emulsion as dielectric. Applied surface science, 2011. 257(14): 5989-5997.
  • 17. Jilani, S.T. and P.C. Pandey, Experimetnal investiga¬tions into the performance of water as dielectric in EDM. International Journal of Machine Tool Design and Research, 1984. 24(1): 31-43.
  • 18. Jeswani, M.L., Electrical discharge machining in distilled water. Wear, 1981. 72(1): 81-88.
  • 19. Chen, S., B. Yan, and F. Huang, Influence of kero¬sene and distilled water as dielectrics on the electric discharge machining characteristics of Ti–6A1–4V. Journal of Materials Processing Technology, 1999. 87(1): 107-111.
  • 20. Lin, Y.C., B.H. Yan, and Y.S. Chang, Machining characteristics of titanium alloy (Ti–6Al–4V) using a combination process of EDM with USM. Journal of Materials Processing Technology, 2000. 104(3): 171-177.
  • 21. Muthuramalingam, T. and B. Mohan, A review on influence of electrical process parameters in EDM process. Archives of Civil and Mechanical Engineering, 2015. 15(1): 87-94.
  • 22. Imran, M., et al., Characterization of EDM Surface Morphology of Al-6061using different dielectrics. Technical Journal, University of Engineering and Technology (UET) Taxila, 2017. 22(3): 51-57.
  • 23. Khan, F., et al., Effect of various surface prepara¬tion techniques on the delamination properties of vacuum infused Carbon fiber reinforced aluminum laminates (CARALL): Experimentation and numer¬ical simulation. Journal of Mechanical Science and Technology, 2017. 31(11): 5265-5272.
  • 24. Qayyum, F., et al., 3D numerical simulation of ther¬mal fatigue damage in wedge specimen of AISI H13 tool steel. Engineering Fracture Mechanics, 2017. 180: 240-253.
  • 25. Asghar, W., et al., Investigation of fatigue crack growth rate in CARALL, ARALL and GLARE. Fatigue & Fracture of Engineering Materials & Structures, 2017. 40(7): 1086-1100.
  • 26. Anjum, N., et al., Shear strain model for equal chan¬nel angular pressing in high elastic extruded plas¬tics. Nucleus, 2015. 52(4): 169-175.
  • 27. Ullah, M., C.S. Wu, and F. Qayyum, Prediction of crack tip plasticity induced due to variation in solidification rate of weld pool and its effect on fatigue crack propagation rate (FCPR). Journal of Mechanical Science and Technology, 2018. 32(8): 3625-3635.
  • 28. Petrovic, J. and G. Thomas, Reaction of aluminum with water to produce hydrogen. US Department of Energy, 2008: 1-26.
  • 29. Reid, R.C., J.M. Prausnitz, and B.E. Poling, The properties of gases and liquids. 1987.
  • 30. Vargaftik, N.B., Handbook of physical properties of liquids and gases-pure substances and mixtures. 1975.
  • 31. Mehmood, S., R.A. Pasha, and A. Sultan, Effect of Electric Discharge Machining on Material Removal Rate and white layer composition. Mehran University Research Journal of Engineering & Technology, 2017. 36(1): 45-54.
  • 32. Imran, M., et al., EDM of aluminum alloy 6061 us¬ing graphite electrode using paraffin oil and distilled water as dielectric medium. Advances in Science and Technology Research Journal, 2017. 11.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-679e38ef-922f-45fb-859c-5866a5604e60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.