Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Hybrid Power Sources/Systems (HPS) are generally treated as local prosumer supplies. The paper presents a new approach to the strategy of electricity contracting from HPS, considering hybrid systems as a new type of quasi-centrally dispatched power units operating in Polish market conditions. The possibilities of contracting electricity from HPS, consisting of three electricity generation technologies: biogas plant, wind power plant and solar power plant, are presented. The opportunity to obtain additional income from the electricity trading on the balancing market was used. Proposals for a new mathematical description of HPS topology were also presented, including a feasibility function, which can be used for technical and economic analyses. The obtained results can be used as a direction of development in the field of optimization of hybrid source operation in cooperation with the power grid. Based on the conducted analyses, it can be observed that electricity sales contracts concluded for each hour of the day may bring additional profit for the investor. However, the strong dependence of the proposed strategy on the situation on the balancing market or other local electricity markets similar in their operations should be emphasized.
Rocznik
Tom
Strony
1543--1551
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- Institute of Electrical Power Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Institute of Electrical Power Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Institute of Electrical Power Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Institute of Electrical Power Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
- [1] A. Ghasemi and M. Enayatzare, “Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response”, Renew. Energy 123, 460–474 (2018).
- [2] Fraunhofer ISE, “Recent Facts about Photovoltaics in Germany”, 2016.
- [3] O.D.T. Odou, R. Bhandari, and R. Adamou, “Hybrid off-grid renewable power system for sustainable rural electrification in Benin”, Renew. Energy 145, 1266–1279 (2020).
- [4] B. Ceran, “The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer”, Energy 167, 853–865 (2019).
- [5] N. Naval, R. Sanchez, and J.M. Yusta, “A virtual power plant optimal dispatch model with large and small scale distributedrenewable generation”, Renew. Energy 151, 570-69 (2020). DOI: 0.1016/j.renene.2019.10.144.
- [6] M. Shafiekhani, A. Badri, M. Shafie-khah, and J.P.S. Catalão, “Strategic bidding of virtual power plant in energy markets: A bi-level multi-objective approach”, Int. J. Electr. Power Energy Syst. 113, 208–219 (2019).
- [7] X. Kong, J. Xiao, Ch. Wang, K. Cui, Q. Jin, and D. Kong, “Bi-level multi-time scale scheduling method based on bidding for multi-operator virtual power plant”, Appl. Energy 249, 178–189 (2019).
- [8] G.D. Burch, “Hybrid Renewable Energy Systems”, Hybrid Power Systems Manager Office of Power Technologies, U.S. Department of Energy U.S. DOE Natural Gas/Renewable Energy Workshops August 21, 2001, Golden, Colorado.
- [9] J. Paska, P. Biczel, and M. Kłos, “Hybrid power systems-an effective way of utilizing primary energy sources”, Renew. Energy 34, 2414–2421 (2009).
- [10] J. Jurasz and J. Mikulik, “Economic and environmental analysis of a hybrid solar, wind and pumped storage hydroelectric energy source: a Polish perspective”, Bull. Pol. Ac.: Tech, 65 (6), 859–869 (2017).
- [11] F. Wang, Y. Xie, and J. Xu, “Reliable-economical equilibrium based short-term scheduling towards hybrid hydro-photovoltaic generation systems: Case study from China”, Appl. Energy 253, 113559 (2019).
- [12] J. Jurasz and B. Ciapała, “Integrating photovoltaics into energy systems by using a run-off-river power plant with pondage to smooth energy exchange with the power gird”, Appl. Energy 198, 21–35 (2017).
- [13] J. Dujardin, A. Kahl, B. Kruyt, S. Bartlett, and M. Lehning, ”Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland”, Energy, 135, 513–525 (2017).
- [14] B. François, M. Borga, J. Creutin, B. Hingray, D. Raynaud, and J. Sauterleute, “Complementarity between solar and hydro power: Sensitivity study to climate characteristics in Northern-Italy”, Renew. Energy 86, 543–553 (2015).
- [15] H. Li, P. Liu, S. Guo, B. Ming, L. Cheng, Z. Yang, “Long-term complementary operation of a large-scale hydro-photovoltaic hybrid power plant using explicit stochastic optimization”, Appl. Energy 238, 863–875 (2019).
- [16] Z. Ma, S. Wang, S. Li, and Y. Shi, “Long-term coordination for hydro-thermal-wind-solar hybrid energy system of provincial power grid”, Energy Procedia 158, 6231–6235 (2019).
- [17] H. Wei, Z. Hongxuan, D. Yu, W. Yiting, D. Ling, and X. Ming, “Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks”, Appl. Energy 250, 389–403 (2019).
- [18] Z. Ding, H. Hou, G. Yu, E. Hu, L. Duan, J. Zhao, “Performance analysis of a wind-solar hybrid power generation system”, Energy Conv. Manag. 181, 223–234 (2019).
- [19] A. Derrouazin, M. Aillerie, N. Mekkakia-Maaza, and J.-P. Charles, “Multi input-output fuzzy logic smart controller for a residential hybrid solar-wind-storage energy system”, Energy Conv. Manag. 148, 238–250 (2017).
- [20] A.Z. Dhunny, J.R.S. Doorga, Z. Allam, M.R. Lollchund, and R. Boojhawon, “Identification of optimal wind, solar and hybrid wind-solar farming sites using fuzzy logic modelling”, Energy 188, 116056 (2019).
- [21] D. Carvalho, E. Guardia, and J. Marangon Lima, “Technical-economic analysis of the insertion of PV power into a wind-solar hybrid system”, Sol. Energy 191, 530–539 (2019).
- [22] A. Giacchino, E. Repetto and A. Gianotti, “Hybrid Solutions for Power Generation Industry”, Energy Procedia 148, 814–821 (2018).
- [23] V.S.N. Narasimha Raju, M. Premalatha, and D.V. Siva Krishna Rao K., “A novel approach for reactive power compensation in hybrid wind-battery system using distribution static compensator”, Int. J. Hydrog. Energy 44, 27907–27920 (2019).
- [24] R.A. Gupta, R. Kumar, and A. Bansal, “BBO-based small autonomous hybrid power system optimization incorporating wind speed and solar radiation forecasting”, Renew. Sust. Energ. Rev. 41, 1366–1375 (2015).
- [25] D. Urbanek, J. Paska, K. Pawlak, P. Terlikowski, and J. Kaliński, “Analysis of the balancing market”, in Rynek energii elektrycznej – rozwój, polityka, ekonomia, 121–134 (2018) [in Polish].
- [26] PSE S.A., “Instruction of the Transmission Network Code”, (2019) [in Polish].
- [27] E. Unamuno and J.A. Barrena, “Hybrid AC/DC microgrids – Part I: Review and classification of topologies”, Renew. Sust. Energ. Rev. 52, 1251–1259 (2015).
- [28] E. Bullich-Massagué, F. Díaz-González, M. Aragüés-Peñalba, F. Girbau-Llistuella, P. Olivella-Rosell, and A. Sumper, “Microgrid clustering architectures”, Appl. Energy 212, 340–361 (2018).
- [29] Y. Wang, S. Lou, Y. Wu, M. Miao, and S. Wang, “Operation strategy of a hybrid solar and biomass power plant in the electricity markets”, Electr. Power Syst. Res. 167, 183–191 (2019).
- [30] P. Bento, H. Nunes, J. Pombo, M. Rosario Calado, and S. Mariano, “Daily operation optimization of a Hybrid Energy System considering a short-term electricity price forecast scheme”, Energies 12, 924 (2019).
- [31] K. Gebrehiwot, Md. Mondal, C. Ringler, and A. Getaneh Gebremeskel, “Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia”, Energy 177, 234–246 (2019).
- [32] M. Parol, Ł. Rokicki, and R. Parol, “Towards optimal operation control in rural low voltage microgrids”, Bull. Pol. Ac.: Tech, 67 (4), 799–812 (2019).
- [33] J. Paska, M. Kłos et al., “Topologies of hybrid RES installations with the strategy of contracting energy”, Prz. Elektrotechniczny 95 (10), 94–97 (2019) [in Polish].
- [34] J. Paska, Distributed energy sources, OWPW, Warszawa, 2017 [in Polish].
- [35] Homer Pro Software, [online]: https://www.homerenergy.com/products/pro/index.html [access: 25.11.2019].
- [36] Data from Polish Power Exchange website, [online]: https://tge.pl/en-home [access: 25.11.2019].
- [37] Data from Polskie Sieci Elektroenergetyczne website, [online], https://www.pse.pl/web/pse-eng/data [access: 25.11.2019].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-679d9523-fd06-4e50-bc1b-fa44e8be6213