PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seismological evidence of basement and detachment fault reactivations in the northern sector of the front of the Salient of Monterrey, Sierra Madre Oriental, northeastern Mexico

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents seismological evidence that the northern sector of the front of the Salient of Monterrey, Sierra Madre Oriental, in northeastern México, is nowadays under tectonic compressional stress. This is derived through the seismic moment tensor inversion of two earthquakes related to a small shallow seismic sequence of four events that occurred from March 16 to 23, 2022, in southern Monterrey. The main earthquake of March 16 (Mw3.69) was felt in some cities of the Monterrey Metropolitan area. The thrust fault mechanisms of the March 16 and March 20 (Mw3.25) earthquakes had depths of 4 and 7 km, respectively, and could be linked with the reactivation of thrust faults below the boundary between the detachment horizon and the basement, which is correlated with geological evidence. For the March 16 earthquake, the nodal fault plane has the following values: strike = 158°, dip = 66°, and rake = 87°, and for the March 20 earthquake, the values were the following: strike = 146°, dip = 82°, and rake 42. These values coincide with the regional trend of the front of the Salient of Monterrey. For this area, recent seismicity recorded at the front of the fold-thrust belt shows a neotectonic compression process.
Czasopismo
Rocznik
Strony
1509--1522
Opis fizyczny
Bibliogr. 66 poz.
Twórcy
  • Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo León, Ex-Hacienda de Guadalupe, Km. 8. Carr. Linares-Cerro Prieto, 67700 Linares, Nuevo León, México
  • Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo León, Ex-Hacienda de Guadalupe, Km. 8. Carr. Linares-Cerro Prieto, 67700 Linares, Nuevo León, México
  • Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo León, Ex-Hacienda de Guadalupe, Km. 8. Carr. Linares-Cerro Prieto, 67700 Linares, Nuevo León, México
  • Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo León, Ex-Hacienda de Guadalupe, Km. 8. Carr. Linares-Cerro Prieto, 67700 Linares, Nuevo León, México
  • Instituto de Geofísica, Universidad Nacional Autónoma de México, 04510 Mexico City, México
Bibliografia
  • 1. Alemán-Gallardo EA, Ramírez-Fernández JA, Rodríguez-Díaz AA, Velasco-Tapia F, Jenchen U, Cruz-Gámez EM, De León-Barragán L, Navarro de León I (2019a) Evidence for an Ordovician continental arc in the pre-Mesozoic basement of the Huizachal-Per-egrina anticlinorium, Sierra Madre Oriental, Mexico: Peregrina Tonalite. Mineral Petrol 113:505-525
  • 2. Alemán-Gallardo EA, Ramírez-Fernández JA, Weber B, Velasco-Tapia F, Casas-Peňa JM (2019b) Novillo Metamorphic Complex, Hui-zachal-Peregrina Anticlinorium, Tamaulipas, Mexico: characterization and development based on whole-rock geochemistry and Nd-isotopic ratios. J South Am Earth Sci 96:102382
  • 3. Barboza-Gudiňo JR, Ramírez-Fernández JA, Torres-Sánchez SA, Valencia VA (2011) Geocronología de circones detríticos de difer-entes localidades del Esquisto Granjeno en el noreste de México. Bol Soc Geol Mex 63:201-216
  • 4. Bartolini C, Mickus K (2001) Tectonic blocks, magmatic arcs, and oceanic terrains: a preliminary interpretation based on gravity, outcrop, and subsurface data, northeast-central Mexico. In: Bartolini C, Buffler RT, Cantú-Chapa A (eds) The western Gulf of Mexico Basin: tectonics, sedimentary basins, and petroleum systems. AAPG Memoir pp 29-43
  • 5. Bouchon M (1981) A simple method to calculate Green’s functions for elastic layered media. Bull Seismol Soc Am 71:959-971
  • 6. Bouchon M (2003) A review of the discrete wavenumber method. Pure Appl Geophys 160:445-465. https://doi.org/10.1007/PL00012545
  • 7. Carvalho J, Barros LV, Zahradník J (2016) Focal mechanisms and moment magnitudes of micro-earthquakes in central Brazil by waveform inversion with quality assessment and inference of the local stress field. J South Am Earth Sci 71:333-343
  • 8. Casas-Peňa JM, Ramírez-Fernández JA, Velasco-Tapia F, Alemán-Gallardo EA, Augustsson C, Weber B, Frei D, Jenchen U (2021) Provenance and tectonic setting of the Paleozoic Tamatán Group, NE Mexico: implications for the closure of the Rheic Ocean. Gondwana Res 91:205-230
  • 9. Coombs HE, Kerr AC, Pindell J, Buchs D, Weber B, Solari L (2021) Petrogenesis of the crystalline basement along the western Gulf of Mexico: Postcollisional magmatism during the formation of Pangea. In. Martens UC, Molina-Garza RS (eds) Southern and central Mexico: basement framework, tectonic evolution, and provenance of Mesozoic-Cenozoic basins pp 1-24
  • 10. Coutant O (1989) Program of numerical simulation AXITRA, Res. Report LGIT (in French), Universite Joseph Fourier, Grenoble
  • 11. Dahlen FA, Suppe J, Davis D (1984) Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb theory. J Geophys Res Solid Earth 89:10087-10101. https://doi.org/10.1029/JB089 iB12p10087
  • 12. Davis D, Suppe J, Dahlen FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res Solid Earth 88:11531172. https://doi.org/10.1029/JB088iB02p01153
  • 13. Doski JAH (2019) Tectonic interpretation of the Raniya earthquake, Kurdistan, northern Iraq. J Seismol 23:303-318. https://doi.org/ 10.1007/s10950-018-9807-0
  • 14. Doski JAH (2021) Active tectonics along the Sheladiz seismogenic fault in the Western Zagros fold-thrust belt, Kurdistan, Northern Iraq. Int J Earth Sci 110:595-608. https://doi.org/10.1007/ s00531-020-01973-y
  • 15. Eguiluz de Antuňano S, Aranda García M, Marrett R (2000) Tectónica de la Sierra Madre Oriental, México. Bol Soc Geol Mex LIII:1-26
  • 16. Fitz-Díaz E, Lawton TF, Juárez-Arriaga E, Chávez-Cabello G (2018) The Cretaceous-Paleogene Mexican orogen: Structure, basin development, magmatism and tectonics. Earth Sci Rev 183:56-84
  • 17. Fojtíková L, Vavryčuk V, Cipciar A, Madarás J (2010) Focal mechanisms of micro-earthquakes in the Dobrá Voda seismoactive area in the Malé Karpaty Mts. (Little Carpathians). Slovakia Tectonophys 492:213-229
  • 18. Gauna-Sauceda IL, Montalvo-Arrieta JC, Salinas-Jasso JA, Ramírez-Fernández JA (2023) The Santo Domingo fault system, Galeana (Nuevo Leon): evidence of neotectonics between the Sierra Madre Oriental and the Basin and Range provinces and hazard implications for northeastern Mexico. Int J Earth Sci. https://doi.org/10. 1007/s00531-023-02334-1
  • 19. Gómez-Arredondo CM, Montalvo-Arrieta JC, Iglesias-Mendoza A, Espindola-Castro VH (2016) Relocation and seismotectonic interpretation of the seismic swarm of August-December of 2012 in the Linares area, northeastern Mexico. Geofís Int 55:95-106
  • 20. González O, Clouard V, Zahradnik J (2017) Moment tensor solutions along the central Lesser Antilles using regional broadband stations. Tectonophys 717:214-225
  • 21. Holdsworth RE, Butler CA, Roberts AM (1997) The recognition of reactivation during continental deformation. J Geol Soc 154:7378. https://doi.org/10.1144/gsjgs.154.1.0073
  • 22. INEGI, Instituto Nacional de Estadística, Geografía e Informática (1977) Carta geológica Monterrey G14C26. México
  • 23. Issaadi A, Semmane F, Yelles-Chaouche A, Galiana-Merino JJ, Layadi K (2020) A shear-wave velocity model in the city of Oued-Fodda (Northern Algeria) from Rayleigh wave ellipticity inversion. Appl Sci 10:1717. https://doi.org/10.3390/app10051717
  • 24. Jackson JA (1980) Reactivation of basement faults and crustal shortening in orogenic belts. Nature 283:343-346
  • 25. Jackson JA, Fitch TJ, McKenzie DP (1981) Active thrusting and the evolution of the Zagros fold belt. Geol Soc Lond, Spec Publ 9:371-379
  • 26. Janský J, Zahraník J, Plicka V (2009) Shallow earthquakes: shallower than expected? Studia Geophys Geod 53:261-268
  • 27. Kikuchi M, Kanamori H (1991) Inversion of complex body waves, III. Bull Seismol Soc Am 81:2335-2350
  • 28. Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88:228-241
  • 29. Koyi HA, Hessami K, Teixell A (2000) Epicenter distribution and magnitude of earthquakes in fold-thrust belts: insights from sandbox models. Geophys Res Lett 27:273-276
  • 30. Křížová D, Zahradník J, Kiratzi A (2013) Resolvability of isotropic component in regional seismic moment tensor inversion. Bull Seismol Soc Am 103:2460-2473. https://doi.org/10.1785/01201 20097
  • 31. Lienert BR, Havskov J (1995) A computer program for locating earthquakes both locally and globally. Seismol Res Lett 66:26-36
  • 32. Marret RJ, Aranda GM (1999) Structure and kinematics development of the Sierra Madre Oriental fold-thrust belt, Mexico. In: Wilson JL, Ward C, Marret RM (eds) Stratigraphy and structure of the Jurassic and Cretaceous platform and basin systems of the Sierra Madre oriental; Monterrey and Saltillo areas; northeastern Mexico, a field book and related papers. South Texas Geological Society, San Antonio, pp 69-98
  • 33. Michalzik D (1988) Trias bis tiefste Unter-Kreide der nordöstlichen Sierra Madre Oriental, Mexiko—fazielle Entwicklung eines pass-siven Kontinentalrandes. PhD thesis, TH-Darmstadt
  • 34. Montalvo Arrieta JC (2022) Reporte del sismo del 16 de marzo de 2022 (M4.2) ubicado a 14 km al noroeste de Santiago Nuevo León. 3 Pp (in spanish). http://fct.uanl.mx/repor te-del-sismo-del-16-de-marzo-de-2022m4-2/
  • 35. Montalvo-Arrieta JC, Sosa-Ramírez RL, Paz-Martínez EG (2015) Relationship between MMI data and ground shaking in the state of Nuevo León, northeastern Mexico. Seismol Res Lett 86:1-7
  • 36. Montalvo-Arrieta JC, Sosa-Ramírez RL, Pérez-Campos X (2017) Evaluation of macroseismic intensities in Mexico from recent earthquakes using ^Sintió un sismo? (did you feel it?). Geofis Int 56:27-36
  • 37. Nieto-Samaniego AF, Del Pilar-Martínez A, Suárez-Arias AM, Angeles-Moreno E, Alaniz-Álvarez SA, Levresse G, Xu S, Olmos-Moya MJP, BáezLópez JA (2023) Una revisión de la geología y evolución tectónica cenozoicas de la Mesa Central de México. Rev Mex Cienc Geol 40:187-213
  • 38. Padilla y Sánchez RJ (1982) Geologic evolution of the Sierra Madre Oriental between Linares, Concepcion del Oro, Saltillo, and Monterrey, Mexico. PhD thesis, The University of Texas at Austin
  • 39. Padilla y Sánchez RJ (1985) Las estructuras de la curvatura de Monterrey, estados de Coahuila, Nuevo León, Zacatecas y San Luis Potosí. Rev Mex Cienc Geol 6:1-20
  • 40. Pantoja-Irys JR, Mujica-Sánchez H, Arista-Cázares LE, Hernández-García CM, Wagner M (2022) Environmental geology and isotopic evaluation of springs within the central part of the Sierra Cerro de La Silla, northeastern México. J South Am Earth Sci 119:104017
  • 41. Ramírez-Fernández JA, Masuch D (2013) Desarrollo Geológico: de continentes ancestrales y océanos a sierras. In: Cantú-Ayala C, Rovalo-Merino M, Marmolejo-Moncivais J, Ortiz-Hernández S, Seriňá-Garza F (eds) Historia Natural del Parque Nacional Cumbres de Monterrey. Universidad Autónoma de Nuevo León, México, pp 58-78
  • 42. Ramírez-Fernández JA, Alemán-Gallardo EA, Cruz-Castillo D, Velasco-Tapia F, Jenchen U, Becchio R, De León-Barragán L, Casas-Peňa JM (2021) Early Mississippian precollisional, peri-Gondwanan volcanic arc in NE-Mexico: Aserradero Rhyolite from Ciudad Victoria, Tamaulipas. Int J Earth Sci 110:2435-2463 Ramos-Zuňiga LG, Medina-Ferrusquía HC, Montalvo Arrieta JC (2012) Patrones de sismicidad en la Curvatura de Monterrey, noreste de México. Rev Mex Cienc Geol 29:572-589
  • 43. Rosa-Cintas S, Clavero D, Delgado J, López-Casado C, GalianaMerino JJ, Garrido J (2017) Characterization of the shear wave velocity in the metropolitan area of Málaga (S Spain) using the H/V technique. Soil Dyn Earthq Eng 92:433-442
  • 44. Rosalia S, Widiyantoro S, Cummins PR, Yudistira T, Nugraha AD, Zulfakriza Z, Setiawan A (2022) Upper crustal shear-wave velocity structure Beneath Western Java, Indonesia from seismic ambient noise tomography. Geosci Lett 9:1. https://doi.org/10.1186/ s40562-021-00208-5
  • 45. Ruh JB, Kaus BJP, Burg JP (2012) Numerical investigation of deformation mechanics in fold-and-thrust belts: influence of rheology of single and multiple décollements. Tectonics. https://doi.org/10. 1029/JB088iB02p01153
  • 46. Sambridge M (1999) Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys J Int 138:479-494. https://doi.org/10.1046/j.1365-246X.1999.00876x
  • 47. Sarjan AFN, Zulfakriza Z, Nugraha AD, Rosalia S, Wei S, Widiyan-toro S, Cummins PR, Muzli M, Sahara DP, Puspito NT, Priyono A, Afif H (2021) Delineation of upper crustal structure beneath the Island of Lombok, Indonesia, using ambient seismic noise tomography. Front Earth Sci 9:560428. https://doi.org/10.3389/ feart.2021.560428
  • 48. SGM, Servicio Geológico Mexicano (2000) Carta geológico-minera Monterrey G14-7, 1:250,000. Secretaría de Economía, México
  • 49. Sokos EN, Zahradník J (2008) ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Comput Geosci 34:967-977
  • 50. Sokos E, Zahradník J (2013) Evaluating centroid-moment-tensor uncertainty in the new version of ISOLA software. Seismol Res Lett 84:656-665. https://doi.org/10.1785/0220130002
  • 51. Sokos E, Zahradník J, Kiratzi A, Jansky A, Gallovič F, Novotny O, Kostelecký J (2012) The January 2010 Efpalio earthquake sequence in the western Corinth Gulf (Greece). Tectonophysics 530-531:299-309. https://doi.org/10.1016/j.tecto.2012.01.005
  • 52. Sosa-Ramírez RL, Paz-Martínez EG, Montalvo-Arrieta JC (2021) The MW 6.2w Punta Santa Elena (Coahuila-Zacatecas) earthquake of 28 April 1841, the largest documented pre-instrumental event and its implications on seismic hazard in Northeastern Mexico. J Seismol 25:477-485
  • 53. Suppe J (1983) Geometry and kinematics of fault-bend folding. Am J Sci 283:684-721
  • 54. Vavryčuk V (2001) Inversion for parameters of tensile earthquakes. J Geophys Res 106:16339. https://doi.org/10.1029/2001JB000372
  • 55. Vavryčuk V (2015) Moment tensor decompositions revisited. J Seismol 19:231-252
  • 56. Villegas ARJ, Zahradník J, Nacif S, Spagnotto S, Winocur D, Flavia Leiv M (2016) Waveform inversion and focal mechanisms of two weak earthquakes in Cordillera Principal (Argentina) between 35°_ and 35.5°S. J South Am Earth Sci 71:359-369. https://doi. org/10.1016/j.jsames.2015.12.001
  • 57. Wathelet M (2008) An improved neighborhood algorithm: parameter conditions and dynamic scaling. Geophys Res Lett 35:L09301. https://doi.org/10.1029/2008GL033256
  • 58. Wathelet M, Jongmans D, Ohrnberger M (2004) Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surf Geophys 2:211-221
  • 59. Wathelet M, Chatelain J-L, Cornou C, Giulio GD, Guillier B, Ohrn-berger M, Savvaidis A (2020) Geopsy: a user-friendly opensource tool set for ambient vibration processing. Seismol Res Lett 91:1878-1889. https://doi.org/10.1785/0220190360
  • 60. Wilson JL (1990) Basement structural controls on Mesozoic carbonate facies in northeastern Mexico: A review. In: Tucker ME, Wilson
  • 61. JL, Crevello PD, Sarg JR, Read JF (eds) Carbonate platforms, facies, sequences and evolution. International Association of Sedi-mentologists Special Publication, vol 9, pp 235-255
  • 62. Williams SA, Singleton JS, Prior MG, Mavor SP, Cross GE, Stockli DF (2021) The early Palaeogene transition from thin-skinned to thick-skinned shortening in the Potosí uplift, Sierra Madre oriental, northeastern Mexico. Int Geol Rev 63:233-263
  • 63. Zahradník J, Custódio S (2012) Moment tensor resolvability: application to southwest Iberia. Bull Seismol Soc Am 102:1235-1254. https://doi.org/10.1785/0120110216
  • 64. Zahradnik J, Jansky J, Plicka V (2008) Detailed waveform inversion for moment tensors of M ~4 events: examples from the Corinth Gulf, Greece. Bull Seismol Soc Am 98:2756-2771. https://doi. org/10.1785/0120080124
  • 65. Zhou Y, Murphy MA, Hamade A (2006) Structural development of the Peregrina-Huizachal anticlinorium, Mexico. J Struct Geol 28:494-507
  • 66. Zodarecky JW (2016) Paleofluid system structure in the Monterrey Salient of the Sierra Madre oriental, northeastern Mexico. MSc Thesis, Northern Illinois University
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-679d4219-d519-455c-a19d-a39d749d6a8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.