PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Testing the impact of the waste product from biogas plants on plant germination and initial root growth

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie wpływu produktów odpadowych z biogazowni na kiełkowanie roślin i początkowy wzrost korzeni
Języki publikacji
EN
Abstrakty
EN
During biogas production, anaerobic digestion of plant material rich in nutrients results in the so-called whole digestate. e application of nutrient-rich material present in digestate could have fertilising effects, especially in intensively used agricultural soils, and in crop yields that can affect the nutrient cycle. e aim of this article is to inform about possibilities of using mixture of digestate and haylage (use the fertilizing effect of both matters), and at the same time contribute to the improvement of agrochemical properties of soil. is study evaluates the effect of applying the mixture of digestate and haylage on germination and early stages of plant development. is article deals with primary test mixtures of digestate and haylage at ratios 10:1, 5:1 and 3:1 and compares the results with whole digestate applications. Simplified statistically calculated quantities showed that all examined mixtures better fertilizing effect in comparison with the control growing media. Based on the chemical analysis of the growing medias, a growing media with mixtures of digestate and haylage characterizing as growing medias with a high content of nutrients and a low amount of hazardous metal was investigated. e examined growing media thus met the limits for organic and commercial fertilizers. Fertilizing effects of growing media with mixture of digestate an haylage can also be noted on increasing the proportion of macronutrients in the soil, reducing fertilization only throughout whole digestate.
PL
Podczas produkcji biogazu fermentacja beztlenowa bogatego w składniki pokarmowe materiału roślinnego skutkuje powstaniem tzw. pofermentu. Zastosowanie materiału bogatego w składniki odżywcze obecnego w pofermencie może mieć działanie nawozowe, zwłaszcza dla intensywnie użytkowanych gleb rolniczych oraz dla plonów, może wpływać na cykl składników odżywczych. Celem artykułu jest przedstawienie możliwości wykorzystania mieszanki pofermentu i sianokiszonki (wykorzystanie efektu nawozowego obu substancji), a jednocześnie przyczynienie się do poprawy właściwości agrochemicznych gleby. W pracy oceniono wpływ zastosowania mieszanki pofermentu i sianokiszonki na kiełkowanie i wczesne etapy rozwoju roślin. Artykuł dotyczy podstawowych mieszanek testowych pofermentu i sianokiszonki w proporcjach 10:1, 5:1 i 3:1 i porównuje wyniki z zastosowaniem całego pofermentu. Uproszczone statystycznie obliczone ilości wykazały, że wszystkie badane mieszanki mają lepsze działanie nawozowe w porównaniu z kontrolnymi podłożami uprawowymi. Na podstawie analizy chemicznej podłoży uprawowych zbadano podłoża uprawowe z mieszaniną pofermentu i sianokiszonki, charakteryzujące się jako podłoża uprawowe o wysokiej zawartości składników odżywczych i niskiej zawartości metali niebezpiecznych. Badane podłoża uprawowe spełniały tym samym limity dla nawozów organicznych i komercyjnych. Nawozowe efekty podłoży uprawowych mieszanką pofermentu i sianokiszonki można również zauważyć na zwiększenie udziału makroskładników w glebie, ograniczając nawożenie tylko w samym pofermencie.
Rocznik
Tom
Strony
25--31
Opis fizyczny
Bibliogr. 41 poz., tab.
Twórcy
  • Faculty of Mining and Geology, VŠB – Technical University Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
  • Faculty of Mining and Geology, VŠB – Technical University Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
  • Faculty of Mining and Geology, VŠB – Technical University Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
  • Faculty of Mining and Geology, VŠB – Technical University Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
Bibliografia
  • 1. Alburquerque, J. A., et al. (2012) Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass and Bioenergy, vol. 40, pp 181-189.
  • 2. B. Scaglia, M. Pognani, F. Adani. (2017) %e anaerobic digestion process capability to produce biostimulant: the case study of the dissolved organic matter (DOM) vs. auxin-like property, Science of the Total Environment, 589, pp. 36-45.
  • 3. Bagdoniene, V. (1997) Plant yield, its quality and agrochemical charakters in the crop rotation on the soil of heavy granulometric composion in biological and chemialised agriculture. Argiculture Scientfic Articels, 58, pp. 38-46.
  • 4. Brodowski, S.; Amelung, W.; Haumaier, L.; Abetz, Z.; Zech, W. (2005) Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy dispersive x-ray spectroscopy. Geoderma,128, 116.
  • 5. Bugbee G.J. (1996) Growth of Rhododendron, Rudbeckia, and %ujia and the leaching of nitrates as affected by the pH of potting media amended with biosolids compost, Compost Science and Utilization, 4, pp. 53-59.
  • 6. Calamai, A ; Chiaramonti, D; Casini, D; Masoni, A; Palchetti, E (2020) Short-Term Effects of Organic Amendments on Soil Properties and Maize (Zea maize L.) Growth (2020) AGRICULTURE-BASEL, 10, Issue 5, Article Number158.
  • 7. Cheng, C.H.; Lehmann, J.; %ies, J.E.; Burton, S.D.; Engelhard, M.H. (2006) Oxidation of black carbon by biotic and abiotic processes. Org. Geochem., 37, 477.
  • 8. Dimambro M.E. (2015) Novel uses for digestates: protected horticulture 20th European Biosolids & Organic Resources Conference & Exhibition. Available at https://www.researchgate.net/profile/Mary_Dimambro/publication/ 284169259_Novel_uses_for_digestate_Protected_horticulture/links/573b29c208ae9ace840e9fa1.pdf
  • 9. Dimambro M.E. (2015) Novel uses for digestates: protected horticulture. 20th European Biosolids & Organic Resources Conference & Exhibition. Available at https://www.researchgate.net/profile/Mary_Dimambro/publication/ 284169259_Novel_uses_for_digestate_Protected_horticulture/links/573b29c208ae9ace840e9fa1.pdf
  • 10. Edmeades D.C. (2003) %e long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutrient Cycling in Agroecosystems, 66: 165–180.
  • 11. EN 16086-2:2012-01 Soil improvers and growing media - Determination of plant response - Part 2: Petri dish test using cress
  • 12. Gamzikov G.P., Barsukov P.A., Varvain O.D. (2007) Change in agrochemical properties of sod-podzolic soil during long-term fertilization. Russian Agricultural Sciences, 33: 314–317.
  • 13. Gell K. , van Groenigen J.W. , Cayuela M.L. (2011) Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity, Journal of Hazardous Materials, 186, pp. 2017-2025.
  • 14. Glowacka, A; Szostak, B ; Klebaniuk, R. (2020) Effect of Biogas Digestate and Mineral Fertilisation on the Soil Properties and Yield and Nutritional Value of Switchgrass Forage, AGRONOMY-BASEL, 10, Issue: 4, Article Number: 490.
  • 15. Govasmark E., Stab J., Holen B., Hoornstra D., Nesbakk T. (2011) Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use. Waste Management 31, 2577 – 2583.
  • 16. Heslop, V. & McCabe, T. (2012). Demonstration of compost and digestate use in Irish agriculture, Years 1 and 2.
  • 17. Heviankova S., Kyncl M., Langarova S. (2013) Investigating the current management of digestate in the Czech Republic. Journal of the Polish Mineral Engineering Society, July – December, 119 – 124.
  • 18. Heviankova, S., Kyncl, M., Kodymova, J. (2014) Study and research on cleaning procedures of anaerobic digestion products. GeoScience Engineering, vol. LX, no. 2, pp. 47-58.
  • 19. HortScience, poster abstract, 41, 997. Risberg, K. (2015). Quality and function of anaerobic digestion residues. PhD, Swedish University of Agricultural Sciences, Uppsala.
  • 20. Jaskulska I., Jaskulski D., Kobierski M. (2014) Effect of liming on the change of some agrochemical soil properties in a long-term fertilization experiment. Plant Soil Environ., 60: 146-150.
  • 21. Jensen, T. L. (2010). Soil pH and the Availability of Plant Nutrients. IPNI Plant Nutrition TODAY, 2.
  • 22. Łabetowicz, J.M.; Kuszelewski, L.; Korc, M.; Szulc, W. (1999) %e importance of organic fertilisation for crop stability and ionic balance of light soil. Zesz. Prob. Post. Nauk Rol., 465, 123–1334.
  • 23. Liedl, B. E., Cummins, M., Young, A., Williams, M. L., Chatfield, J. M. (2004a). Liquid effluent from poultry waste bioremediation as a potential nutrient source for hydroponic tomato production. Acta Horticulturae, 659, 647-652.
  • 24. Liedl, B. E., Cummins, M., Young, A., Williams, M. L., Chatfield, J. M. (2004b). Hydroponic lettuce production using liquid effluent from poultry waste bioremediation as a nutrient source. Acta Horticulturae, 659, 721-728.
  • 25. Liedl, B. E., Wilfong, K., Taylor, C., Mazzaferro, K. (2006). Liquid effluent from poultry waste bioremediation as a nutrient source for hydroponic cucumber production.
  • 26. Marada, P., Vačeřova V., Kamarad L., Dundalkova P. , Mareček J (2008) Manual for handling digestate and fugate. [online]. 2edition . Mendel University of Agriculture and Forestry.
  • 27. Maunuksela, Liisa & Herranen, Mirkka & Torniainen, Merja. (2012). Quality Assessment of Biogas Plant End Products by Plant Bioassays. International Journal of Environmental Science and Development. 3. 305-310.
  • 28. Mehlich A. (1984). Mehlich 3 soil test extraction: a modification of Mehlich 2 extractant, Communications in Soil Science and Plant Analysis, 15, pp. 1409-1416.
  • 29. Neal, J. & Wilkie, A. C. (2014). Anaerobic Digester Effluent as Fertilizer for Hydroponically Grown Tomatoes. University of Florida Journal of Undergraduate Research, 15, 1-5.
  • 30. Oleszczuk, P. (2008) Phytotoxicity of municipal sewage sludge composts related to physico-chemical properties, PAHs and heavy metals, Ecotoxicol. Environ. Saf., vol. 69, pp. 496-505.
  • 31. Pliva, P. et al. (2006) Establishment, course and management of the composting process. Praha: Research Institute of Agricultural Technology. ISBN 80-86884-11-2.
  • 32. REGULATION (EU) 2019/1009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003.
  • 33. Ronga D. , Pane C. , Zaccardelli M. , Pecchioni N. (2016) Use of spent soffee ground compost in peat-based growing media for the production of basil and tomato potting plants, Communications in Soil Science and Plant Analysis, 47, pp. 356-368.
  • 34. Sanik, J., Jr.; Perhins, A.T.; Schrenk, W.G. (1952) %e effect of the calcium -magnesium ratio on the solubility and availability of plant nutrients. Soil Sci. Soc. Am. Proc.,16, 263–267.
  • 35. Stoknes K., Scholwin F., Krzesiński W., Wojciechowska E., Jasińska A. (2016) Efficiency of a novel “Food to waste to food” system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse, Waste Management, 56, pp. 466-476.
  • 36. Vitěz T., Geršl M., Mareček J., Kudělka J., Krčalova E. (2013) Mineralogical-chemical characteristics of fermentation residues in laboratory biogases and possibilities of their use for evaluation of soil properties. Mendel University in Brno and the Ministry of Agriculture of the Czech Republic. Available at: http://eagri.cz/public/web/file/325087/ MZE_fermentacni_zbytek_final_2013.pdf
  • 37. Voća N., Ćosić T., Rupić V., Jukić Ž., Kalambura S. (2005). Digested residue as a fertilizer a+er the mesophilic process of anaerobic digestion. Plant, Soil, Environment, 51, 262– 266.
  • 38. Wang X. , Sun C. , Gao S. , Wang L. , Shuokui (2001) Validation of germination rate and root elongation as indicator to assess phytotoxicity in Cucumis sativus, Chemosphere, 44, pp. 1711-1721.
  • 39. WRAP (2012). Digestate & compost in agriculture. Bulletin 3 - March 2012. Field experiments focus on crop available nitrogen supply from digestate. Banbury: WRAP.
  • 40. Yu F.B. , Luo X.P. , Song C.F. , Shan S.D. (2010) Concentrated biogas slurry enhanced soil fertility and tomato quality, Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 60, pp. 262-268.
  • 41. Zucconi F. , Pera A. , Forte M., Bertoldi M. De (1981) Evaluating toxicity of immature compost, BioCycle, 22, pp. 54-57.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-679b7d6f-69cf-49f1-8384-969bb7737413
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.