PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of steel pipeline without removing cladding based on differential compensation probe

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The harmonic magnetic field detection method has the advantage of a large lifting height, which is particularly beneficial for the detection of steel pipelines without removing cladding. However, it has the problem of strong coupling between the excited and induced magnetic field signal, which limits its detection accuracy. In this work, we propose a differential compensation probe, which can effectively suppress the excitation magnetic field signal in the detection signal, in order to significantly improve the accuracy of the harmonic magnetic field detection method. The defect detection capability of the probe is verified both by the finite element simulations and experiments. Despite its simple structure, the differential compensation probe greatly improves the signal-to-noise ratio of the detection signal. It is expected that the detection method based on the differential compensation probe will have a broad application prospect in the detection of pressure pipelines and vessels with cladding layers.
Rocznik
Strony
1--21
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr., wzory
Twórcy
autor
  • College of Mechanical & Energy Engineering, Beijing University of Technology
autor
  • College of Mechanical & Energy Engineering, Beijing University of Technology
autor
  • College of Mechanical & Energy Engineering, Beijing University of Technology
autor
  • College of Mechanical & Energy Engineering, Beijing University of Technology
autor
  • College of Mechanical & Energy Engineering, Beijing University of Technology
autor
  • College of Mechanical & Energy Engineering, Beijing University of Technology
  • College of Mechanical & Energy Engineering, Beijing University of Technology
autor
  • College of Mechanical & Energy Engineering, Beijing University of Technology
Bibliografia
  • [1] Wang, X., Yang, L., Sun, T., Rasool, G., Sun, M., Hu, N., & Guo, Z. (2023). A review of development and application of out-of-pipe detection technology without removing cladding. Measurement, 219, 113249. https://doi.org/10.1016/j.measurement.2023.113249
  • [2] Wang, R., Kang, Y., Tang, J., Feng, B., & Deng, Y. (2020). A Novel Magnetic Flux Leakage Testing Method Based on AC and DC Composite Magnetization. Journal of Nondestructive Evaluation, 39(4). https://doi.org/10.1007/s10921-020-00730-0
  • [3] Hutchins, D.A., Watson, R.L., Davis, L.A.J., Akanji, L., Billson, D.R., Burrascano, P., Laureti, S., & Ricci, M. (2020). Ultrasonic Propagation in Highly Attenuating Insulation Materials. Sensors, 20(8), 2285. https://doi.org/10.3390/s20082285
  • [4] Ona, D.I., Tian, G.Y., Sutthaweekul, R., & Naqvi, S.M. (2019). Design and optimisation of mutual inductance based pulsed eddy current probe. Measurement, 144, 402-409. https://doi.org/10.1016/j.measurement.2019.04.091
  • [5] Song, Y., & Wu, X. (2022). An analytical solution for vertical coils near a multi-layered metallic pipe in Pulsed Eddy Current Testing. NDT & E International, 125, 102570. https://doi.org/10.1016/j.ndteint.2021.102570
  • [6] Abdul-Majid, S., & Balamesh, A. (2014). Single Side Imaging of Corrosion Under Insulation Using Single Photon Gamma Backscattering. Research in Nondestructive Evaluation, 25(3), 172-185. https://doi.org/10.1080/09349847.2013.869376
  • [7] Oh, S., Cheong, Y., Kim, D., & Kim, K. (2019). On-Line Monitoring of Pipe Wall Thinning by a High Temperature Ultrasonic Waveguide System at the Flow Accelerated Corrosion Proof Facility. Sensors, 19(8), 1762. https://doi.org/10.3390/s19081762
  • [8] Zaini, M.A.H.P., Saari, M.M., Nadzri, N.A., Aziz, Z., Ramlan, N.H., & Tsukada, K. (2021). Extraction of Flux Leakage and Eddy Current Signals Induced by Submillimeter Backside Slits on Carbon Steel Plate Using a Low-Field AMR Differential Magnetic Probe. IEEE Access, 9, 146755-146770. https://doi.org/10.1109/access.2021.3123421
  • [9] Rifai, D., Abdalla, A., Ali, K., & Razali, R. (2016). Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications. Sensors, 16(3), 298. https://doi.org/10.3390/s16030298
  • [10] Zhao, Y., Wang, X., Sun, T., Chen, Y., Yang, L., Zhang, T., & Ju, H. (2021). Non-contact harmonic magnetic field detection for parallel steel pipeline localization and defects recognition. Measurement, 180, 109534. https://doi.org/10.1016/j.measurement.2021.109534
  • [11] Yuan, X., Li, W., Chen, G., Yin, X., Jiang, W., Zhao, J., & Ge, J. (2019). Inspection of both inner and outer cracks in aluminum tubes using double frequency circumferential current field testing method. Mechanical Systems and Signal Processing, 127, 16-34. https://doi.org/10.1016/j.ymssp.2019.02.054
  • [12] Wang, X., Gu, Y., Chen, Y., Ullah, Z., & Zhao, Y. (2020). Research on a damage identification method of harmonic magnetic field detection in steel pipes with cladding. Insight - Non-Destructive Testing and Condition Monitoring, 62(9), 533-539. https://doi.org/10.1784/insi.2020.62.9.533
  • [13] Zhao, Y., Wang, X., Chen, Y., Ju, H., Zhang, T., & Ullah, Z. (2019). Defect Detection of Metal Pipeline Based on Harmonic Eddy Current. 2019 Photonics &; Electromagnetics Research Symposium - Spring (PIERS-Spring), 700-704. https://doi.org/10.1109/piers-spring46901.2019.9017755
  • [14] Chady, T., & Sikora, R. (2003). Optimization of eddy-current sensor for multifrequency systems. IEEE Transactions on Magnetics, 39(3), 1313-1316. https://doi.org/10.1109/tmag.2003.810412
  • [15] Liu, L., Chen, D., Pan, M., Tian, W., Wang, W., & Yu, Y. (2019). Planar Eddy Current Sensor Array with Null-Offset. IEEE Sensors Journal, 19(12), 4647-4651. https://doi.org/10.1109/jsen.2019.2901351
  • [16] Hayashi, M., Saito, T., Nakamura, Y., Sakai, K., Kiwa, T., Tanikura, I., & Tsukada, K. (2019). Extraction Method of Crack Signal for Inspection of Complicated Steel Structures Using a Dual-Channel Magnetic Sensor. Sensors, 19(13), 3001. https://doi.org/10.3390/s19133001
  • [17] Trung, L.Q., Kasai, N., Sekino, K., & Miyazaki, S. (2023). Eddy current convergence probes with self-differential and self-nulling characteristics for detecting cracks in conductive materials. Sensors and Actuators A: Physical, 349, 114084. https://doi.org/10.1016/j.sna.2022.114084
  • [18] Peng, X.U., Chenlu, Z., Zhongxing, X.U., Ping, W. (2018). Rail crack identification method based on differential eddy current testing. Nondestructive Testing, 12(40) 7-11, https://doi.org/10.11973/wsjc201812002
  • [19] Pasadas, D.J., Ramos, H.G., Baskaran, P., & Ribeiro, A.L. (2020). ECT in composite materials using double excitation coils and resonant excitation/sensing circuits. Measurement, 161, 107859. https://doi.org/10.1016/j.measurement.2020.107859
  • [20] Wang, J., Yusa, N., Pan, H., Takagi, T., & Hashizume, H. (2013). Evaluation of Sensitivity of Remote Field Eddy Current Testing and Low-Frequency Eddy Current Testing for Inspecting Grooves of Metal Plate. Materials Transactions, 54(1), 90-95. https://doi.org/10.2320/matertrans.m2012323
  • [21] Xu, P., Zeng, H., Qian, T., & Liu, L. (2022). Research on defect detection of high-speed rail based on multi-frequency excitation composite electromagnetic method. Measurement, 187, 110351. https://doi.org/10.1016/j.measurement.2021.110351
  • [22] Fan, X., He, Y., Chen, T., & Hou, C. (2022). Research on crack monitoring technology of flexible eddy current array sensor based on TMR sensors. Measurement, 192, 110926. https://doi.org/10.1016/j.measurement.2022.110926
  • [23] Betta, G., Ferrigno, L., Laracca, M., Rasile, A., & Sangiovanni, S. (2021). A novel TMR based triaxial eddy current test probe for any orientation crack detection. Measurement, 181, 109617. https://doi.org/10.1016/j.measurement.2021.109617
  • [24] Wang, X., Gu, Y., Chen, Y., Ullah, Z., Pan, Q., & Zhao, Y. (2020). A new technology for steel pipeline damage detecting without removing cladding. Measurement, 159, 107700. https://doi.org/10.1016/j.measurement.2020.107700
  • [25] Yu, S., Wei, Y., Zhang, J., & Wang, S. (2019). Noise Optimization Design of Frequency-Domain Air-Core Sensor Based on Capacitor Tuning Technology. Sensors, 20(1), 194. https://doi.org/10.3390/s20010194
  • [26] Kishore, K., & Akbar, S.A. (2020). Evolution of Lock-In Amplifier as Portable Sensor Interface Platform: A Review. IEEE Sensors Journal, 20(18), 10345-10354. https://doi.org/10.1109/jsen.2020.2993309
  • [27] Macias-Bobadilla, G., Rodríguez-Reséndiz, J., Mota-Valtierra, G., Soto-Zarazúa, G., Méndez-Loyola, M., & Garduño-Aparicio, M. (2016). Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments. Sensors, 16(3), 379. https://doi.org/10.3390/s16030379
  • [28] Yang, L., Wang, X., Sun, T., Meng, T., Yang, X., Li, L., & Qi, Y. (2022). A technology of full perimeter inspection for steel pipeline without removing cladding. Measurement, 190, 110746. https://doi.org/10.1016/j.measurement.2022.110746
  • [29] Qin, Y., Chen, J., Li, K., Zhang, W., Wang, W., Ouyang, J., & Yang, X. (2022). Eddy Current Magnetic Localization of Nonmagnetic Metal Targets Based on Metal Shell Model. IEEE Sensors Journal, 22(11), 10774-10782. https://doi.org/10.1109/jsen.2022.3168612
Uwagi
This work is supported by Beijing Municipal Science & Technology Commission, the Administrative Committee of the Zhongguancun Science Park grant No. Z231100006023011, and the R&D Program of Beijing Municipal Education Commission (KM202210005032).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-679b0961-0dd9-4fa1-ab9e-a17081d47842
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.