PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of Ca50Mg20Zn12Cu18 Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Ca50Mg20Zn12Cu18 was assessed with different methods in order to characterize its basic characteristics, and to determine whether the amorphous alloy of such composition would be applicable as an implant material. The XRD analysis was conducted to conclude the structure of the initial material. The Ca50Mg20Zn12Cu18 ingot sample demonstrates crystalline structure containing two main intermetallic phases, however as-cast plates show features of an amorphous material, revealing the characteristic amorphous halo on the x-ray patterns. It was confirmed by the scanning electron microscopy method and fracture images revealing chevron pattern morphology with shell type fracture. Corrosion resistance, was studied using the potentiostatic analysis. The amorphous samples show higher resistance than the crystalline one. Post corrosion surface of the Ca50Mg20Zn12Cu18 alloy exhibits high concentration of magnesium and calcium hydroxides, forming the globular structures in large aggregates of spherical units.
Rocznik
Tom
Strony
75--82
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Gliwice, Poland
Bibliografia
  • [1] Mihov, D. & Katerska, B. (2010). Some biocompatible materials used in medical practice. Trakia Journal of Sciences. 8(8), 119-125. https://doi.org/10.2320 /matertrans.L-MRA2008828.
  • [2] Zberg, B., Uggowitzer, P.J. & Löffler, J.F. (2009). MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials. 8, 887. http://dx.doi.org/10.1038/nmat2542.
  • [3] Babilas, R., Cesarz-Andraczke, K., Babilas, D. & Simka, W. (2015). Structure and Corrosion Resistance of Ca50Mg20Cu30 Bulk Metallic Glasses. Journal of Materials Engineering and Performance. 24(1), 167-174. https://doi.org/10.1007/s11665-014-1308-x.
  • [4] Senkov, O.N., Scott, J.M. & Miracle, D.B. (2008). Effect of Al addition on glass forming ability and glass stability of Ca-Mg-Zn-Cu based bulk metallic glasses. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 39(8), 1901-1907. https://doi.org/10.1007 /s11661-007-9255-x.
  • [5] Nowosielski, R., Babilas, R., Guwer, A. & Borowski, A. (2012). Fabrication of Mg 65 Cu 25 Y 10 bulk metallic glasses. Archives of Materials Science and Engineering. 53(2), 77-84.
  • [6] Anderson, J.M. (1983f). Biological performance of materials-fundamentals of biocompatibility (Vol. 8, Biomedical engineering and instrumentation series), by Jonathan Black, Marcel Dekker, New York, NY, 1981. Journal of Biomedical Materials Research. 17(3), 557-558. https://doi.org/10.1002/jbm.820170313.
  • [7] Radha, R. & Sreekanth, D. (2017). Insight of magnesium alloys and composites for orthopedic implant applications – a review. Journal of Magnesium and Alloys. 5(3), 286-312. https://doi.org/10.1016/J.JMA.2017.08.003.
  • [8] Byrne, J.H., O’Cearbhaill, E.D. & Browne, D.J. (2015). Comparison of crystalline and amorphous versions of a magnesium-based alloy: corrosion and cell response.
  • [9] Gilman, J.J. (1975). Mechanical behavior of metallic glasses. Journal of Applied Physics. 46(4), 1625-1633. https://doi.org/10.1063/1.321764.
  • [10] Kuhlmann, J., Bartsch, I., Willbold, E., Schuchardt, S., Holz, O., Hort, N. & Heineman, W.R. (2013). Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomaterialia. 9(10), 8714-8721. https://doi.org/10.1016/J.ACTBIO.2012.10.008.
  • [11] Noviana, D., Paramitha, D., Ulum, M.F. & Hermawan, H. (2016). The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats. Journal of Orthopaedic Translation. 5, 9-15. https://doi.org/ 10.1016/J.JOT.2015.08.003.
  • [12] Eddy Jai Poinern, G., Brundavanam, S. & Fawcett, D. (2013). Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. American Journal of Biomedical Engineering. 2(6), 218-240. https://doi.org/ 10.5923/j.ajbe.20120206.02.
  • [13] Bergemann, C., Zaatreh, S., Wegner, K., Arndt, K., Podbielski, A., Bader, R., … Nebe, J.B. (2017). Copper as an alternative antimicrobial coating for implants - An in vitro study. World Journal of Transplantation. 7(3), 193-202. https://doi.org/10.5500/wjt.v7.i3.193.
  • [14] Costerton, J.W., Stewart, P.S. & Greenberg, E.P. (1999). Bacterial biofilms: a common cause of persistent infections. Science (New York, N.Y.). 284(5418), 1318-1322. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10334980.
  • [15] Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery. 2(2), 114-122. https://doi.org/10.1038/nrd1008.
  • [16] Solomons, N.W. (1985). Biochemical, metabolic, and clinical role of copper in human nutrition. Journal of the American College of Nutrition. 4(1), 83-105. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3921587.
  • [17] Tümer, Z. & Møller, L.B. (2010). Menkes disease. European Journal of Human Genetics: EJHG, 18(5), 511-518. https://doi.org/10.1038/ejhg.2009.187.
  • [18] Mahdavi-Roshan, M., Ebrahimi, M. & Ebrahimi, A. (2015). Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women. Clinical Cases in Mineral and Bone Metabolism: The Official Journal of the Italian Society of Osteoporosis, Mineral Metabolism, and
  • Skeletal Diseases, 12(1), 18-21. https://doi.org/10.11138/ ccmbm/2015.12.1.018.
  • [19] Pepa, G. Della, & Brandi, M.L. (2016). Microelements for bone boost: the last but not the least. Clinical Cases in Mineral and Bone Metabolism: The Official Journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseases. 13(3), 181-185. https://doi.org/10.11138 /ccmbm/2016.13.3.181.
  • [20] Massè, A., Bruno, A., Bosetti, M., Biasibetti, A., Cannas, M., & Gallinaro, P. (2000). Prevention of pin track infection in external fixation with silver coated pins: clinical and microbiological results. Journal of Biomedical Materials Research. 53(5), 600-604. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10984710.
  • [21] Amiya, K., & Inoue, A. (2002). Formation, thermal stability and mechanical properties of ca-based bulk glassy alloys. MATERIALS TRANSACTIONS. 43(1), 81-84. https://doi.org/ 10.2320/matertrans.43.81.
  • [22] Morrison, M.L., Buchanan, R.A., Liaw, P.K., Senkov, O.N. & Miracle, D.B. (2006). Electrochemical behavior of Ca-based bulk metallic glasses. Metallurgical and Materials Transactions A, 37(April), 1239-1245. https://doi.org/ 10.1007/s11661-006-1075-x.
  • [23] Liu, G., Gao, P., Xue, Z., Tong, Z., & Zhang, M. (2011). Ultrahigh strength Mg–Li based bulk metallic glasses: Preparation and performance research. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing - Mater Sci Eng A-Struct Mater. 528. https://doi.org/10.1016/j.msea.2011. 06.012.
  • [24] Babilas, R., Bajorek, A., Hawełek, Ł., Głuchowski, W., Simka, W. & Babilas, D. (2017). Structural and electrochemical characterization of the Ca50Mg20Cu25Zn5 amorphous alloy. Journal of Non-Crystalline Solids. 471, 467-475. https://doi.org/10.1016/J.JNONCRYSOL.2017. 07.006.
  • [25] Cao, J.D., Kirkland, N.T., Laws, K.J., Birbilis, N. & Ferry, M. (2012). Ca–Mg–Zn bulk metallic glasses as bioresorbable metals. Acta Biomaterialia. 8(6), 2375-2383. https://doi.org/10.1016/J.ACTBIO.2012.03.009.
  • [26] Henrist, C., Mathieu, J.-P., Vogels, C., Rulmont, A. & Cloots, R. (2003). Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. Journal of Crystal Growth. 249(1-2), 321-330. https://doi.org/10.1016/S0022-0248(02)02068-7.
  • [27] Rodriguez-Navarro, C., Hansen, E., & Ginell, W. S. (2005). Calcium hydroxide crystal evolution upon aging of lime putty. Journal of the American Ceramic Society. 81(11), 3032-3034. https://doi.org/10.1111/j.1151-2916.1998. tb02735.x.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67971bbb-79d1-4eb9-b196-05ad44912470
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.