PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Weyl-Titchmarsh theory for Sturm-Liouville operators with distributional potentials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We systematically develop Weyl-Titchmarsh theory for singular differential operators on arbitrary intervals (a, b) ⊆ R associated with rather general differential expressions of the type [formula] where the coefficients p, q, r, s are real-valued and Lebesgue measurable on (a, b), with p ≠ 0, r > 0 a.e. on (a, b), and p−1, q, r, [formula] , and ƒ is supposed to satisfy [formula]. In particular, this setup implies that τ permits a distributional potential coefficient, including potentials in [formula]. We study maximal and minimal Sturm-Liouville operators, all self-adjoint restrictions of the maximal operator Tmax, or equivalently, all self-adjoint extensions of the minimal operator Tmin, all self-adjoint boundary conditions (separated and coupled ones), and describe the resolvent of any self-adjoint extension of Tmin. In addition, we characterize the principal object of this paper, the singular Weyl-Titchmarsh-Kodaira m-function corresponding to any self-adjoint extension with separated boundary conditions and derive the corresponding spectral transformation, including a characterization of spectral multiplicities and minimal supports of standard subsets of the spectrum. We also deal with principal solutions and characterize the Friedrichs extension of Tmin. Finally, in the special case where τ is regular, we characterize the Krein-von Neumann extension of Tmin and also characterize all boundary conditions that lead to positivity preserving, equivalently, improving, resolvents (and hence semigroups).
Rocznik
Strony
467--563
Opis fizyczny
Bibliogr. 160 poz.
Twórcy
autor
  • University of Vienna Faculty of Mathematics Nordbergstrasse 15 1090 Wien, Austria
autor
  • University of Missouri Department of Mathematics Columbia, MO 65211, USA
autor
  • The University of Tennessee at Chattanooga Mathematics Department 415 EMCS Building, Dept. 6956, 615 McCallie Ave, Chattanooga, TN 37403, USA
autor
  • University of Vienna Faculty of Mathematics Nordbergstrasse 15 1090 Wien, Austria
  • International Erwin Schrödinger Institute for Mathematical Physics Boltzmanngasse 9, 1090 Wien, Austria
Bibliografia
  • [1] N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Space, vol. II, Pitman, Boston, 1981.
  • [2] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, 2nd ed., AMS Chelsea Publishing, Providence, RI, 2005.
  • [3] S. Albeverio, R. Hryniv, Ya. Mykytyuk, On spectra of non-self-adjoint Sturm-Liouville operators, Sel. Math. New Ser. 13 (2008), 571–599.
  • [4] S. Albeverio, A. Kostenko, M. Malamud, Spectral theory of semibounded Sturm-Liouville operators with local interactions on a discrete set, J. Math. Phys. 51, 102102 (2010), 24 pp.
  • [5] S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators, Cambridge Univ. Press, Cambridge, 2001.
  • [6] A. Alonso, B. Simon, The Birman-Krein-Vishik theory of selfadjoint extensions of semibounded operators, J. Operator Theory 4 (1980), 251–270; Addenda 6 (1981), 407.
  • [7] T. Ando, K. Nishio, Positive selfadjoint extensions of positive symmetric operators,Tohoku Math. J. (2), 22 (1970), 65–75.
  • [8] Yu. Arlinski˘ı, S. Belyi, E. Tsekanovskii, Conservative Realizations of Herglotz--Nevanlinna Functions, Operator Theory: Advances and Applications, vol. 217, Birkhäuser, Springer, Basel, 2011.
  • [9] Yu.M. Arlinski˘ı, E.R. Tsekanovskii, On the theory of nonnegative selfadjoint extensions of a nonnegative symmetric operator, Rep. Nat. Acad. Sci. Ukraine 2002, no. 11, 30–37.
  • [10] Yu.M. Arlinski˘ı, E.R. Tsekanovski˘ı, On von Neumann’s problem in extension theory of nonnegative operators, Proc. Amer. Math. Soc. 131 (2003), 3143–3154.
  • [11] Yu.M. Arlinski˘ı, E.R. Tsekanovski˘ı, The von Neumann problem for nonnegative symmetric operators, Integr. Equ. Oper. Theory 51 (2005), 319–356.
  • [12] Yu. Arlinski˘ı, E. Tsekanovski˘ı, M.Kre˘ın’s research on semibounded operators, its contemporary developments, and applications, in Modern Analysis and Applications. The Mark Krein Centenary Conference, vol. 1, V. Adamyan, Y. M. Berezansky, I. Gohberg, M. L. Gorbachuk, V. Gorbachuk, A. N. Kochubei, H. Langer, and G. Popov (eds.), Operator Theory: Advances and Applications, vol. 190, Birkhäuser, Basel, 2009, pp.65–112.
  • [13] M. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, G. Teschl, The Krein–von Neumann extension and its connection to an abstract buckling problem, Math. Nachr.283 (2010), 165–179.
  • [14] M. Ashbaugh, F. Gesztesy, M. Mitrea, G. Teschl, Spectral theory for perturbed Krein Laplacians in nonsmooth domains, Adv. Math. 223 (2010), 1372–1467.
  • [15] M.-L. Baeteman, K. Chadan, The inverse scattering problem for singular oscillating potentials, Nuclear Phys. A 255 (1975), 35–44.
  • [16] M.-L. Baeteman, K. Chadan, Scattering theory with highly singular oscillating potentials, Ann. Inst. H. Poincaré Sect. A 24 (1976), 1–16.
  • [17] J.-G. Bak, A.A. Shkalikov, Multipliers in dual Sobolev spaces and Schrödinger operators with distribution potentials, Math. Notes 71 (2002), 587–594.
  • [18] J. Ben Amara, A.A. Shkalikov, Oscillation theorems for Sturm-Liouville problems with distribution potentials, Moscow Univ. Math. Bull. 64 (2009) 3, 132–137.
  • [19] A. Ben Amor, C. Remling, Direct and inverse spectral theory of one-dimensional Schrödinger operators with measures, Integral Equations Operator Theory 52 (2005) 3, 395–417.
  • [20] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.
  • [21] C. Bennewitz, W.N. Everitt, On second-order left-definite boundary value problems, in Ordinary Differential Equations and Operators, (Proceedings, Dundee, 1982 ), W.N. Everitt and R. T. Lewis (eds.), Lecture Notes in Math., vol. 1032, Springer, Berlin, 1983, pp. 31–67.
  • [22] M.Sh. Birman, On the theory of self-adjoint extensions of positive definite operators, Mat. Sbornik 38 (1956), 431–450 (in Russian).
  • [23] M.Sh. Birman, Perturbations of the continuous spectrum of a singular elliptic operator by varying the boundary and the boundary conditions, Vestnik Leningrad Univ. 17, no. 1, 22–55 (1962) (in Russian); Engl. transl. in Spectral Theory of Differential Operators: M. Sh. Birman 80th Anniversary Collection, T. Suslina and D. Yafaev (eds.), AMS Translations, Ser. 2, Advances in the Mathematical Sciences, vol. 225, Amer. Math. Soc., Providence, RI, 2008, pp. 19–53.
  • [24] T. Buckmaster, H. Koch, The Korteweg–de Vries equation at H−1 regularity, arXiv: 1112.4657.
  • [25] A. Cabada, J.A. Cid, On comparison principles for the periodic Hill’s equation, J. London Math. Soc. (2) 86 (2012), 272–290.
  • [26] S. Clark, F. Gesztesy, R. Nichols, M. Zinchenko, Boundary data maps and Krein’s resolvent formula for Sturm-Liouville operators on a finite interval, Operators and Matrices (to appear), arXiv: 1204.3314.
  • [27] M. Combescure, J. Ginibre, Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials, Ann. Inst. H. Poincaré 24 (1976), 17–29.
  • [28] M. Combescure, Spectral and scattering theory for a class of strongly oscillating potentials, Commun. Math. Phys. 73 (1980), 43–62.
  • [29] W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, vol. 220, Springer, New York, 1971.
  • [30] E.B. Davies, One-Parameter Semigroups, Academic Press, London, 1980.
  • [31] E.B. Davies, Linear Operators and their Spectra, Cambridge Studies in Advanced Mathematics, vol. 106, Cambridge Univ. Press, Cambridge, 2007.
  • [32] E.B. Davies, Singular Schrödinger operators in one dimension, Mathematika 59 (2013), 141–159.
  • [33] P. Djakov, B. Mityagin, Spectral gap asymptotics of one-dimensional Schrödinger operators with singular periodic potentials, Integral Transforms Special Fcts. 20 (2009) 3–4, 265–273.
  • [34] P. Djakov, B. Mityagin, Spectral gaps of Schrödinger operators with periodic singular potentials, Dyn. PDE 6 (2009) 2, 95–165.
  • [35] P. Djakov, B. Mityagin, Fourier method for one-dimensional Schrödinger operators with singular periodic potentials, in Topics in Operator Theory, vol. 2: Systems and Mathematical Physics, J. A. Ball, V. Bolotnikov, J. W. Helton, L. Rodman, I. M. Spitkovsky (eds.), Operator Theory: Advances and Applications, vol. 203, Birhäuser, Basel, 2010, 195–236.
  • [36] P. Djakov, B. Mityagin, Criteria for existence of Riesz bases consisting of root functions of Hill and 1d Dirac operators, J. Funct. Anal. 263 (2012), 2300–2332.
  • [37] J. Eckhardt, Inverse uniqueness results for Schrödinger operators using de Branges theory, Complex Anal. Oper. Theory (to appear), http://dx.doi.org/10.1007/s11785-012-0265-3.
  • [38] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Supersymmetry and Schrödinger-type operators with distributional matrix-valued potentials, arXiv: 1206.4966.
  • [39] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Inverse spectral theory for Sturm-Liouville operators with distributional potentials, arXiv: 1210.7628.
  • [40] J. Eckhardt, G. Teschl, Uniqueness results for one-dimensional Schrödinger operators with purely discrete spectra, Trans. Amer. Math. Soc. (to appear), http://dx.doi.org/10.1090/S0002-9947-2012-05821-1.
  • [41] J. Eckhardt, G. Teschl, Sturm-Liouville operators with measure-valued coefficients, J. Analyse Math. (to appear), arXiv: 1105.3755.
  • [42] W.N. Everitt, L. Markus, Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-Differential Operators, Math. Surv. and Monographs, vol. 61, Amer. Math. Soc., RI, 1999.
  • [43] W.G. Faris, Self-Adjoint Operators, Lecture Notes in Mathematics, vol. 433, Springer, Berlin, 1975.
  • [44] W. Feller, Generalized second order differential operators and their lateral conditions, Illinois J. Math. 1 (1957), 459–504.
  • [45] C. Frayer, R.O. Hryniv, Ya.V. Mykytyuk, P.A. Perry, Inverse scattering for Schrödinger operators with Miura potentials: I. Unique Riccati representatives and ZS-AKNS system, Inverse Probl. 25, 115007 (2009), 25 pp.
  • [46] H. Freudenthal, Über die Friedrichsche Fortsetzung halbbeschränkter Hermitescher Operatoren,Kon. Akad. Wetensch., Amsterdam, Proc. 39 (1936), 832–833.
  • [47] K. Friedrichs, Spektraltheorie halbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren I, II, Math. Ann. 109 (1934), 465–487, 685–713, corrs. in Math. Ann. 110 (1935), 777–779.
  • [48] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, 2nd revised and extended ed., de Gruyter Studies in Math., vol. 19, de Gruyter, Berlin, 2011.
  • [49] C. Fulton, Titchmarsh–Weyl m-functions for second order Sturm-Liouville problems,Math. Nachr. 281 (2008), 1417–1475.
  • [50] C. Fulton, H. Langer, Sturm-Liouville operators with singularities and generalized Nevanlinna functions, Complex Anal. Oper. Theory 4 (2010), 179–243.
  • [51] C. Fulton, H. Langer, A. Luger, Mark Krein’s method of directing functionals and singular potentials, Math. Nachr. 285 (2012), no. 14–15, 1791–1798.
  • [52] F. Gesztesy, A complete spectral characterization of the double commutation method,J. Funct. Anal. 117 (1993), 401–446.
  • [53] F. Gesztesy, M. Mitrea, R. Nichols, Heat kernel bounds for elliptic partial differential operators in divergence form with Robin-type boundary conditions, J. Analyse Math. (to appear), arXiv: 1210.0667.
  • [54] F. Gesztesy, B. Simon, G. Teschl, Zeros of the Wronskian and renormalized oscillation theory, Amer. J. Math. 118 (1996), 571–594.
  • [55] F. Gesztesy, R. Weikard, Some remarks on the spectral problem underlying the Camassa–Holm hierachy, arXiv: 1303.5793.
  • [56] F. Gesztesy, M. Zinchenko, On spectral theory for Schrödinger operators with strongly singular potentials, Math. Nachr. 279 (2006), 1041–1082.
  • [57] F. Gesztesy, M. Zinchenko, Symmetrized perturbation determinants and applications to boundary data maps and Krein-type resolvent formulas, Proc. London Math. Soc.(3) 104 (2012), 577–612.
  • [58] D. Gilbert, On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints, Proc. Roy. Soc. Edinburgh 112A (1989), 213–229.
  • [59] D.J. Gilbert, On subordinacy and spectral multiplicity for a class of singular differential operators, Proc. Roy. Soc. Edinburgh A 128 (1998), 549–584.
  • [60] J. Glimm, A. Jaffe, Quantum Physics. A Functional Integral Point of View, Springer, New York, 1981.
  • [61] A.S. Goriunov, V.A. Mikhailets, Resolvent convergence of Sturm-Liouville operators with singular potentials, Math. Notes 87 (2010) 2, 287–292.
  • [62] A. Goriunov, V. Mikhailets, Regularization of singular Sturm-Liouville equations, Meth. Funct. Anal. Topology 16 (2010) 2, 120–130.
  • [63] A. Goriunov, V. Mikhailets, K. Pankrashkin, Formally self-adjoint quasi-differential operators and boundary value problems, arXiv: 1205.1810.
  • [64] G. Grubb, A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 425–513.
  • [65] G. Grubb, Spectral asymptotics for the “soft” selfadjoint extension of a symmetric elliptic differential operator, J. Operator Th. 10 (1983), 9–20.
  • [66] G. Grubb, Known and unknown results on elliptic boundary problems, Bull. Amer. Math. Soc. 43 (2006), 227–230.
  • [67] G. Grubb, Distributions and Operators, Graduate Texts in Mathematics, vol. 252, Springer, New York, 2009.
  • [68] S. Grudsky, A. Rybkin, On positive type initial profiles for the KdV equation, Proc. Amer. Math. Soc. (to appear).
  • [69] O. Hald, Discontinuous inverse eigenvalue problems, Commun. Pure. Appl. Math. 37 (1984), 539–577.
  • [70] P. Hartman, Differential equations with non-oscillatory eigenfunctions. Duke Math. J. 15 (1948), 697–709.
  • [71] P. Hartman, Ordinary differential equations, SIAM, Philadelphia, 2002.
  • [72] J. Herczynski, On Schrödinger operators with distributional potentials, J. Operator Th. 21 (1989), 273–295.
  • [73] R.O. Hryniv, Analyticity and uniform stability in the inverse singular Sturm-Liouville spectral problem, Inverse Probl. 27 (2011) 065011, 25 pp.
  • [74] R.O. Hryniv, Ya.V. Mykytyuk, 1D Schrödinger operators with periodic singular potentials, Meth. Funct. Anal. Topology 7 (2001) 4, 31–42.
  • [75] R.O. Hryniv, Ya.V. Mykytyuk, 1D Schrödinger operators with singular Gordon potentials, Meth. Funct. Anal. Topology 8 (2002) 1, 36–48.
  • [76] R.O. Hryniv, Ya.V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Probl. 19 (2003), 665–684.
  • [77] R.O. Hryniv, Ya.V. Mykytyuk, Half-inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Probl. 20 (2004), 1423–1444.
  • [78] R.O. Hryniv, Ya.V. Mykytyuk, Transformation operators for Sturm-Liouville operators with singular potentials, Math. Phys. Anal. Geom. 7 (2004), 119–149.
  • [79] R.O. Hryniv, Ya.V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials. IV. Potentials in the Sobolev space scale, Proc. Edinburgh Math. Soc. (2) 49 (2006), 309–329.
  • [80] R.O. Hryniv, Ya.V. Mykytyuk, Eigenvalue asymptotics for Sturm-Liouville operators with singular potentials, J. Funct. Anal. 238 (2006), 27–57.
  • [81] R.O. Hryniv, Ya.V. Mykytyuk, Self-adjointness of Schrödinger operators with singular potentials, Meth. Funct. Anal. Topology 18 (2012), 152–159.
  • [82] R.O. Hryniv, Ya.V. Mykytyuk, P.A. Perry, Inverse scattering for Schrödinger operators with Miura potentials, II. Different Riccati representatives, Commun. Part. Diff. Eq. 36 (2011), 1587–1623.
  • [83] R.O. Hryniv, Ya.V. Mykytyuk, P.A. Perry, Sobolev mapping properties of the scattering transform for the Schrödinger equation, in Spectral Theory and Geometric Analysis, M.Braverman, L. Friedlander, T. Kappeler, P. Kuchment, P. Topalov, and J. Weitsman (eds.), Contemp. Math. 535 (2011), 79–93.
  • [84] K. Jörgens, Linear Integral Operators, transl. by G.F. Roach, Pitman, Boston, 1982.
  • [85] I.S. Kac, On the multiplicity of the spectrum of a second-order differential operator, Sov. Math. Dokl. 3 (1962), 1035–1039.
  • [86] I.S. Kac, Spectral multiplicity of a second order differential operator and expansion in eigenfunctions, Izv. Akad. Nauk SSSR 27 (1963), 1081–1112. Erratum, Izv. Akad. Nauk SSSR 28 (1964), 951–952 (in Russian).
  • [87] I.S. Kac, The existence of spectral functions of generalized second order differential systems with a boundary condition at the singular end, Transl. Amer. Math. Soc., Ser.2, 62 (1967), 204–262.
  • [88] H. Kalf, A characterization of the Friedrichs extension of Sturm-Liouville operators, J. London Math. Soc. (2) 17 (1978), 511–521.
  • [89] H. Kalf, J.Walter, Strongly singular potentials and essential self-adjointness of singular elliptic operators in C10 (Rn\{0}), J. Funct. Anal. 10 (1972), 114–130.
  • [90] T. Kappeler, C. Möhr, Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials, J. Funct. Anal. 186 (2001), 62–91.
  • [91] T. Kappeler, P. Perry, M. Shubin, P. Topalov, The Miura map on the line, Int. Math. Res. Notices 50 (2005), 3091–3133.
  • [92] T. Kappeler, P. Topalov, Global fold structure of the Miura map on L2(T), Int. Math. Res. Notices 39 (2004), 2039–2068.
  • [93] T. Kappeler, P. Topalov, Global well-posedness of mKdV in L2(T,R), Commun. Part. Diff. Eq. 30 (2005), 435–449.
  • [94] T. Kappeler, P. Topalov, Global wellposedness of KdV in H−1(T,R), Duke Math. J. 135 (2006), 327–360.
  • [95] M. Kato, Estimates of the eigenvalues of Hill’s operators with distributional coefficients, Tokyo J. Math. 33 (2010), 361–364.
  • [96] T. Kato, Perturbation Theory for Linear Operators, corr. printing of the 2nd ed., Springer, Berlin, 1980.
  • [97] A. Kishimoto, D.W. Robinson, Positivity and monotonicity properties of C0-semigroups. II, Commun. Math. Phys. 75 (1980),84-101.
  • [98] K. Kodaira, The eigenvalue problem for ordinary differential equations of the second order and Heisenberg’s theory of S-matrices, Amer. J. Math. 71 (1949), 921–945.
  • [99] E. Korotyaev, Characterization of the spectrum of Schrödinger operators with periodic distributions, Int. Math. Res. Notices 2003, no. 37, 2019–2031.
  • [100] E. Korotyaev, Sharp asymptotics of the quasimomentum, Asymptot. Anal. 80 (2012), 269–287.
  • [101] A.S. Kostenko, M.M. Malamud, One-dimensional Schrödinger operator with _-interactions, Funct. Anal. Appl. 44 (2010) 2, 151–155.
  • [102] A.S. Kostenko, M.M. Malamud, 1-D Schrödinger operators with local point interactions on a discrete set, J. Differential Equations 249 (2010), 253–304.
  • [103] A. Kostenko, A. Sakhnovich, G. Teschl, Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials, Int. Math. Res. Notices 2012, no. 8, 1699–1747.
  • [104] A. Kostenko, A. Sakhnovich, G. Teschl, Commutation methods for Schrödinger operators with strongly singular potentials, Math. Nachr. 285 (2012), 392–410.
  • [105] A. Kostenko, G. Teschl, On the singular Weyl-Titchmarsh function of perturbed spherical Schrödinger operators, J. Differential Equations 250 (2011), 3701–3739.
  • [106] A. Kostenko, G. Teschl, Spectral asymptotics for perturbed spherical Schrödinger operators and applications to quantum scattering, Comm. Math. Phys., DOI: 10.1007/s00220-013-1698-x.
  • [107] M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Mat. Sbornik 20 (1947), 431–495 (in Russian).
  • [108] M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. II, Mat. Sbornik 21 (1947), 365–404 (in Russian).
  • [109] P. Kurasov, A. Luger, An operator theoretic interpretation of the generalized Titchmarsh–Weyl coefficient for a singular Sturm-Liouville problem, Math. Phys. Anal. Geom. 14 (2011), 115–151.
  • [110] E. Lieb, M. Loss, Analysis, 2nd edition, Graduate Studies in Math., Amer. Math. Soc.,vol. 14, RI, 2001.
  • [111] M.M. Malamud, Certain classes of extensions of a lacunary Hermitian operator,Ukrain. Math. J. 44 (1992), 190–204.
  • [112] M. Marletta, A. Zettl, The Friedrichs extension of singular differential operators,J. Differential Equations 160 (2000), 404–421.
  • [113] V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators, Springer, Berlin, 2009.
  • [114] V.G. Maz’ya, I.E. Verbitsky, Boundedness and compactness criteria for the one-dimensional Schrödinger operator, in Function Spaces, Interpolation Theory and Related Topics, de Gruyter, Berlin, 2002, 369–382.
  • [115] V.G. Maz’ya, I.E. Verbitsky, The Schrödinger operator on the energy space: boundedness and compactness criteria, Acta Math. 188 (2002), 263–302.
  • [116] V.G. Maz’ya, I.E. Verbitsky, Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator, Invent. Math. 162 (2005), 81–136.
  • [117] V.G. Maz’ya, I.E. Verbitsky, Form boundedness of the general second-order differential operator, Commun. Pure Appl. Math. 59 (2006), 1286–1329.
  • [118] V.A. Mikhailets, V.M. Molyboga, Singular eigenvalue problems on the circle, Meth.Funct. Anal. Topology 10 (2004) 3, 44–53.
  • [119] V.A. Mikhailets, V.M. Molyboga, Uniform estimates for the semi-periodic eigenvalues of the singular differential operators, Meth. Funct. Anal. Topology 10 (2004) 4, 30–57.
  • [120] V.A. Mikhailets, V.M. Molyboga, Singularly perturbed periodic and semiperiodic differential operators, Ukrainian Math. J. 59 (2007) 6, 858–873.
  • [121] V.A. Mikhailets, V.M. Molyboga, One-dimensional Schrödinger operators with singular periodic potentials, Meth. Funct. Anal. Topology 14 (2008) 2, 184–200.
  • [122] V.A. Mikhailets, V.M. Molyboga, Spectral gaps of the one-dimensional Schrödinger operators with singular periodic potentials, Meth. Funct. Anal. Topology 15 (2009) 1, 31–40.
  • [123] K.A. Mirzoev, T.A. Safanova, Singular Sturm-Liouville operators with distribution potential on spaces of vector functions, Dokl. Math. 84 (2011), 791–794.
  • [124] M. Möller, A. Zettl, Semi-boundedness of ordinary differential operators, J. Differential Equations 115 (1995), 24–49.
  • [125] M. Möller, A. Zettl, Symmetric differential operators and their Friedrichs extension, J. Differential Equations 115 (1995), 50–69.
  • [126] Ya.V. Mykytyuk, N.S. Trush, Inverse spectral problems for Sturm-Liouville operators with matrix-valued potentials, Inverse Probl. 26, 015009 (2010), 36 pp.
  • [127] M.A. Naimark, Linear Differential Operators, Part II, F. Ungar, New York, 1968.
  • [128] H.-D. Niessen, A. Zettl, The Friedrichs extension of regular ordinary differential operators, Proc. Roy. Soc. Edinburgh Sect. 114A (1990), 229–236.
  • [129] H.-D. Niessen, A. Zettl, Singular Sturm-Liouville problems: the Friedrichs extension and comparison of eigenvalues, Proc. London Math. Soc. (3) 64 (1992), 545–578.
  • [130] E.M. Ouhabaz, Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series, vol. 31, Princeton University Press, Princeton, NJ, 2005.
  • [131] D.B. Pearson, Scattering theory for a class of oscillating potentials, Helv. Phys. Acta 52 (1979), 541–554.
  • [132] M. Reed, B. Simon, Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, New York, 1978.
  • [133] F. Rellich, Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung, (German) Math. Ann. 122 (1951), 343–368.
  • [134] F.S. Rofe-Beketov, E.H. Hristov, Transformation operators and scattering functions for a highly singular potential, Sov. Math. Dokl. 7 (1966), 834–837.
  • [135] F.S. Rofe-Beketov, E.H. Hristov, Some analytical questions and the inverse Sturm-Liouville problem for an equation with highly singular potential, Sov. Math. Dokl. 10 (1969), 432–435.
  • [136] R. Rosenberger, A new characterization of the Friedrichs extension of semibounded Sturm-Liouville operators, J. London Math. Soc. (2) 31 (1985), 501–510.
  • [137] A. Rybkin, Regularized perturbation determinants and KdV conservation laws for irregular initial profiles, in Topics in Operator Theory. vol. 2. Systems and Mathematical Physics, J.A. Ball, V. Bolotnikov, J.W. Helton, L. Rodman, I.M. Spitkovsky (eds.), Operator Theory: Advances and Applications, vol. 203, Birkhäuser, Basel, 2010, 427–444.
  • [138] I.V. Sadovnichaya, Equiconvergence of expansions in series in eigenfunctions of Sturm-Liouville operators with distribution potentials, Sborn. Math. 201 (2010), 1307–1322.
  • [139] I.V. Sadovnichaya, Equiconvergence in Sobolev and Hölder spaces of expansions in eigenfunctions of Sturm-Liouville operators with distribution potentials, Dokl. Math. 83 (2011), 169–170.
  • [140] A.M. Savchuk, A.A. Shkalikov, Sturm-Liouville operators with singular potentials, Math. Notes 66 (1999) 6, 741–753.
  • [141] A.M. Savchuk, A.A. Shkalikov, The trace formula for Sturm-Liouville operators with singular potentials, Math. Notes 69 (2001) 3–4, 387–400.
  • [142] A.M. Savchuk, A.A. Shkalikov, Sturm-Liouville operators with distribution potentials, Trans. Moscow Math. Soc. 2003, 143–192.
  • [143] A.M. Savchuk, A.A. Shkalikov, Inverse problem for Sturm-Liouville operators with distribution potentials: reconstruction from two spectra, Russ. J. Math. Phys. 12 (2005) 4, 507–514.
  • [144] A.M. Savchuk, A.A. Shkalikov, On the eigenvalues of the Sturm-Liouville operator with potentials from Sobolev spaces, Math. Notes 80 (2006), 814–832.
  • [145] A.M. Savchuk, A.A. Shkalikov, On the properties of maps connected with inverse Sturm-Liouville problems, Proc. Steklov Inst. Math. 260 (2008) 1, 218–237.
  • [146] A.M. Savchuk, A.A. Shkalikov, Inverse problems for Sturm-Liouville operators with potentials in Sobolev spaces: uniform stability, Funct. Anal. Appl. 44 (2010) 4, 270–285.
  • [147] M. Shahriari, A. Jodayree Akbarfam, G. Teschl, Uniqueness for inverse Sturm-Liouville problems with a finite number of transmission conditions, J. Math. Anal. Appl. 395 (2012), 19–29.
  • [148] D. Shin, On quasi-differential operators in Hilbert space, Doklad. Akad. Nauk. SSSR 18 (1938), 523–526 (in Russian).
  • [149] D. Shin, On solutions of a linear quasi-differential equation of the nth order, Mat. Sbornik 7(49) (1940), 479–532 (in Russian).
  • [150] D. Shin, Quasi-differential operators in Hilbert space, Mat. Sbornik 13(55) (1943), 39–70 (in Russian).
  • [151] B. Simon, On a theorem of Kac and Gilbert, J. Funct. Anal. 223 (2005), 109–115.
  • [152] A.V. ˘Straus, On extensions of a semibounded operator, Sov. Math. Dokl. 14 (1973), 1075–1079.
  • [153] G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators, Graduate Studies in Math., Amer. Math. Soc., vol. 99, RI, 2009.
  • [154] M.L. Vi˘sik, On general boundary problems for elliptic differential equations, Trudy Moskov. Mat. Obsc. 1 (1952), 187–246 (in Russian); Engl. transl. in Amer. Math. Soc. Transl. (2), 24 (1963), 107–172.
  • [155] J. von Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1929–30), 49–131.
  • [156] J. Weidmann, Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics, vol. 68, Springer, New York, 1980.
  • [157] J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Math., vol. 1258, Springer, Berlin, 1987.
  • [158] A. Zettl, Formally self-adjoint quasi-differential operators, Rocky Mountain J. Math.5 (1975), 453–474.
  • [159] A. Zettl, On the Friedrichs extension of singular differential operators, Commun. Appl.Anal. 2 (1998), 31–36.
  • [160] A. Zettl, Sturm-Liouville Theory, Math. Surv. and Monographs, vol. 121, Amer. Math.Soc., RI, 2005
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67962cd7-3750-4e0d-b6c6-f1bf69c9b64c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.