PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Manufacturing and characterisation of PMMA-graphene oxide (GO) nanocomposite sandwich films with electrospun nano-fibre core

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Nanocomposite materials, comprising of polymer matrices and nano-sized reinforcements, exhibit significantly enhanced mechanical and functional properties at extremely low filler loading. In recent years, graphene oxide (GO) has emerged as a new class of low cost nano-filler with high mechanical strength and stiffness, and alterable electrical properties. For nano-fillers with layered structure like GO, complete exfoliation and uniform dispersion of filler in the polymer matrices is essential to enhance the matrix-filler interaction and in turn the mechanical and/or functional property improvement. Conventional nanocomposite manufacturing methods including in-situ polymerisation and solvent processing encounter the problem of agglomeration of GO films. Additionally, its low bulk density presents difficulties in handling, and the energy requirement for mechanical mixing and extrusion processes is very high. In this work, we report manufacturing of poly(methyl methacrylate)-graphene oxide (PMMA-GO) nano-fibre mat using relatively novel approach of employing electrospinning technique. The manufactured electrospun core was inserted between plain polymer layers to prepare a robust and easy to handle sandwich film. Morphology and structure of the PMMA-GO nano-fibre cores was evaluated with scanning and transmission electron microscopy and X-ray diffractometry. The manufactured nano-fibre mat samples exhibited uniform diameter and dispersion. The functional parameters including thermal stability and gas barrier were evaluated with differential scanning calorimetry and oxygen permeation testing, and these functional properties were observed to be superior to that of monolithic polymer counterparts.
Rocznik
Strony
835--840
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • Centre for Advanced Composites Materials, Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand
autor
  • Centre for Advanced Composites Materials, Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand
autor
  • Centre for Advanced Composites Materials, Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand
autor
  • Centre for Advanced Composites Materials, Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand
  • Centre for Advanced Composites Materials, Department of Mechanical Engineering, University of Auckland, Auckland 1142, New Zealand
Bibliografia
  • [1] T.J. Pinnavaia, G.W. Beall (Eds.), Polymer-clay nanocomposites, John Wiley & Sons, Ltd, 2000.
  • [2] T. Ramanathan, A.A. Abdala, S. Stankovich, et al., Functionalized graphene sheets for polymer nanocomposites, Nature Nanotechnology 3/11 (2008) 327-331.
  • [3] J.R. Potts, D.R. Dreyer, C.W. Bielawski, et al., Graphene-based polymer nanocomposites, Polymer 30 (2010) 5-25.
  • [4] T. Kuilla, S. Bhadra, D. Yao, et al., Recent advances in graphene based polymer composites, Progress in Polymer Science 35 (2010) 1350-1375.
  • [5] H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites, American Chemical Society -Macromolecules Perspective 30/20-40 (2010) A-P.
  • [6] H.C. Schniepp, J.L. Li, M.J. McAllister, et al., Functionalised graphene sheets derived from splitting graphite oxide, The Journal of Physical Chemistry 110 (2006) 8535-8539.
  • [7] J. Liang, Y. Wang, Y. Huang, et al., Electromagnetic interference shielding of graphene/epoxy composites, Science Direct 47/3 (2008) 922-925.
  • [8] G. Eda, H.E. Unalan, N. Rupensinghe, et al., Field Emission from graphene based composite thin films, Applied Physics Letters 93/23 (2008) 233502-233502-3.
  • [9] D.A. Dikin, S. Stankovich, E.J. Zimney, et al., Preparation and characterization of graphene oxide paper, Nature 448/7152 (2007) 457-460.
  • [10] D.R. Dreyer, S. Park, C.W. Bielawski, et al., The chemistry of graphene oxide, Chemical Society Reviews 39 (2010) 228-240.
  • [11] Y. Yang, J. Wang, J. Zhang et al., Exfoliated graphite oxide decorated by PDMAEMA Chains and Polymer Particles, Langmuir 25/19 (2009) 11808-11814.
  • [12] J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, et al., Graphene oxide dispersions in organic solvents, Langmuir 24/19 (2008) 10560-10564.
  • [13] Z. Lin, Y. Yao, Z. Li, et al., Solvent-assisted thermal reduction of graphite oxide, Journal of Physical Chemistry C 114/35 (2010) 14819-14825.
  • [14] M.J. McAllister, J.L. Li, D.H. Adamson, et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chemistry of Materials 19/18 (2007) 4396-4404.
  • [15] B.Z. Jang, and A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review, Journal of Materials Science 43/ 15 (2008) 5092-5101.
  • [16] P.G. Liu, K.C. Gong, P. Xiao, Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide, Carbon 37/12 (1999) 2073-2075.
  • [17] S. Stankovich, D.A. Dikin, G.H.B. Dommett, et al., Graphene-based composite materials, Nature 442/20 (2006) 282-286.
  • [18] H.K. Jeong, Y.P. Lee, M.H. Jin, et al., Thermal stability of graphite oxide, Chemical Physics Letters 470/4-6 (2009) 255-258.
  • [19] W. Tomaszewski, W. Swieszkowski, M. Szadkowski, et al., Simple methods influencing on properties of electrospun fibrous mats, Journal of Applied Polymer Science 125/6 (2012) 4261-4266.
  • [20] G. Taylor, Electrically driven jets, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 313/ 1515 (1969) 453-475.
  • [21] Y.F. Qian, Y. Su, X.-Q. Li, et al., Electrospinning of polymethyl methacrylate nanofibres in different solvents, Iranian Polymer Journal, 19/2 (2010) 123-129.
  • [22] A. Kilic, F. Oruc, A. Demir, Effects of polarity on electrospinning process, Textile Research Journal 78/6 (2008) 532-539.
  • [23] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society 80/6 (1958) 1339-1339.
  • [24] S. Rao, D. Liu, P. Jaiswal, et al., Electrospun nanofibre cores containing graphene oxide for Sandwich Films: Manufacturing and Analysis, Advanced Materials Research 410-410 (2011) 26-30.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6795d10d-10e2-4aaa-9574-29e11bb4a2ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.