PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regularization based discriminative feature pattern selection for the classification of Parkinson cases using machine learning

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objectives: This paper focuses on developing a regularization-based feature selection approach to select the most effective attributes from the Parkinson’s speech dataset. Parkinson’s disease is a medical condition that progresses as the dopamine-producing nerve cells are affected. Early diagnosis often reduces the effect on the individuals, minimizes the advancement over time. In recent times, intelligent computational models are used in many complex cases to diagnose a clinical condition with high precision. These models are intended to find meaningful representation from the data to diagnose the disease. Machine learning acts as a tool, gears up the model learning process through a mathematical baseline. But, not in all cases, machine learning will be demanded to perform optimally. It comes with a few constraints, mainly the representation of the data. The learning models expect a clean, noise-free input, which in-turns produces better discriminative patterns over different categories of classes. Methods: The proposed model identified five candidate features as predictors. This feature subset is trained with different varieties of supervised classifiers to trace out the best-performing model. Results: The results are validated through accuracy, precision, recall, and receiver’s operational characteristic curves. The proposed regularization- based feature selection model outperformed the benchmark algorithms by attaining 100% accuracy on most of the classifiers, other than linear discriminant analysis (99.90%) and naïve Bayes (99.51%). Conclusions: This paper exhibits the need for intelligent models to analyze complex data patterns to assist medical practitioners in better disease diagnosis. The results exhibit that the regularization methods find the best features based on their importance score, which improved the model performance over other feature selection methods.
Rocznik
Strony
181--189
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Research Scholar, PG & Research Department of Computer Science, Adhiparasakthi College of Arts & Science, Kalavai, India
  • PG & Research Department of Computer Science, Adhiparasakthi College of Arts & Science, Kalavai, India
Bibliografia
  • 1. Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross GW, et al. Prevalence of Parkinson’s disease across North America. Npj Parkinson’s Dis 2018;4:1-7.
  • 2. Ragothaman M, Murgod UA, Gururaj G, Kumaraswamy SD, Muthane U. Lower risk of Parkinson’s disease in an admixed population of European and Indian origins. Mov Disord 2003;18: 912-4.
  • 3. Gourie-Devi M, Gururaj G, Satishchandra P, Subbakrishna DK. Prevalence of neurological disorders in Bangalore, India: a community-based study with a comparison between urban and rural areas. Neuroepidemiology 2003;23:261-8.
  • 4. Surathi P, Jhunjhunwala K, Yadav R, Pal PK. Research in Parkinson’s disease in India: a review. Ann Indian Acad Neurol 2016;19:9-20.
  • 5. Razdan S, Kaul RL, Motta A, Kaul S, Bhatt RK. Prevalence and pattern of major neurological disorders in rural Kashmir (India) in 1986. Neuroepidemiology 1994;13:113-9.
  • 6. Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 2004;318:121-34.
  • 7. Lewis SJG, Foltynie T, Blackwell AD, Robbins TW, Owen AM, Barker RA. Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatr 2005;76:343-8.
  • 8. Brooks DJ. Imaging approaches to Parkinson disease. J Nucl Med 2010;51:596-609.
  • 9. Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA 2020;323:548-60.
  • 10. Pedrosa DJ, Timmermann L. Management of Parkinson’s disease. Neuropsychiatric Dis Treat 2013;9:321-40.
  • 11. Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, et al. A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput Appl 2020;32: 10927-33.
  • 12. Pereira CR, Weber SA, Hook C, Rosa GH, Papa JP. Deep learningaided Parkinson’s disease diagnosis from handwritten dynamics. In: 29th SIBGRAPI conference on graphics, patterns and images. Sao Paulo, Brazil; 2016.
  • 13. Vásquez-Correa JC, Arias-Vergara T, Orozco-Arroyave JR, Eskofier B, Klucken J, Nöth E. Multimodal assessment of Parkinson’s disease: a deep learning approach. IEEE J Biomed Health Inf 2018;23:1618-30.
  • 14. Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng 2017;19:221-48.
  • 15. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60-88.
  • 16. Kuresan H, Samiappan D, Ghosh S, Gupta AS. Early diagnosis of Parkinson’s disease based on non-motor symptoms: a descriptive and factor analysis. J Ambient Intell Humaniz Comput 2021 Mar 1. https://doi.org/10.1007/s12652-021-02944-0 [Epub ahead of print].
  • 17. Yadav S, Singh MK. Hybrid machine learning classifier and ensemble techniques to detect Parkinson’s disease patients. SN Comput Sci 2021;2:1-10.
  • 18. Sahu B, Mohanty SN. CMBA-SVM: a clinical approach for Parkinson disease diagnosis. Int J Inf Technol 2021;13:647-55.
  • 19. Pramanik M, Pradhan R, Nandy P, Bhoi AK, Barsocchi P. Machine learning methods with decision forests for Parkinson’s detection. Appl Sci 2021;11:581.
  • 20. Anudeep P, Mourya P, Anandhi T. Parkinson’s disease detection using machine learning techniques. In: Advances in electronics, communication and computing. Singapore: Springer; 2021.
  • 21. Senturk ZK. Early diagnosis of Parkinson’s disease using machine learning algorithms. Med Hypotheses 2020;138: 109603.
  • 22. Gunduz H. Deep learning-based Parkinson’s disease classification using vocal feature sets. IEEE Access 2019;7:115540-51.
  • 23. Sakar BE, Isenkul ME, Sakar CO, Sertbas A, Gurgen F, Delil S, et al. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J Biomed Health Inf 2013; 17:828-34.
  • 24. Chandrashekar G, Sahin F. A survey on feature selection methods. Comput Electr Eng 2014;40:16-28.
  • 25. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003;3:1157-82.
  • 26. Jović A, Brkić K, Bogunović N. A review of feature selection methods with applications. In: 2015 38th international convention on information and communication technology, electronics and microelectronics. Opatija, Croatia; 2015.
  • 27. Fonti V, Belitser E. Feature selection using lasso. VU Amst Res Pap Bus Anal 2017;30:1-25.
  • 28. Paul S, Drineas P. Feature selection for ridge regression with provable guarantees. Neural Comput 2016;28:716-42.
  • 29. Karthik S, Sudha M. A regularization-based feature scoring criterion on candidate genetic marker selection of sporadic motor neuron disease. In: Intelligent data engineering and analytics. Singapore: Springer; 2021.
  • 30. Sekaran K, Sudha M. Predicting autism spectrum disorder from associative genetic markers of phenotypic groups using machine learning. J Ambient Intell Humaniz Comput 2020;12: 3257-70.
  • 31. Cunningham P, Cord M, Delany SJ. Supervised learning. In: Machine learning techniques for multimedia. Berlin, Heidelberg: Springer; 2008.
  • 32. Karthik S, Sudha M. A survey on machine learning approaches in gene expression classification in modelling computational diagnostic system for complex diseases. Int J Eng Adv Technol 2018;8:182-91.
  • 33. Karthik S, Sudha M. Diagnostic gene biomarker selection for Alzheimer’s classification using machine learning. Int J Innovative Technol Explor Eng 2019;8:2348-52.
  • 34. Karthik S, Perumal RS, Mouli PC. Breast cancer classification using deep neural networks. In: Knowledge computing and its applications. Singapore: Springer; 2018.
  • 35. Sekaran K, Sudha M. Prediction of lipopolysaccharides simulation responsiveness on gene expression profiles of major depression disorder affected cases using machine learning. Int J Sci Technol Res 2019;8:21-4.
  • 36. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res 2011;12:2825-30.
  • 37. Raschka S. Python machine learning. Birmingham: Packt Publishing Ltd; 2015.
  • 38. Sekaran K, Sudha M. Predicting drug responsiveness with deep learning from the effects on gene expression of obsessive– compulsive disorder affected cases. Comput Commun 2020;151: 386-94.
  • 39. Karthik S, Sudha M. Predicting bipolar disorder based nonoverlapping genetic phenotypes using deep neural network. Evol Intell 2021;14:619-34.
  • 40. Kamalakannan K, Anandharaj G. Stacked autoencoder based feature compression for optimal classification of Parkinson disease from vocal feature vectors using immune algorithms. Int J Adv Comput Sci Appl 2021;12: 470-6.
  • 41. Kamalakannan K, Anandharaj DG. Deep feature selection from the vocal features for effective classification of Parkinson’s disease. Int J Adv Sci Technol 2020;29:1661-72.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67956459-16c6-4d7c-9e08-005964671ca6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.