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Method for stabilogram characterization

using angular-segment function
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Abstract. This paper presents a new approach to descriptions of stabilograms. In the proposed method, a one-dimensional angular-segment
function is generated from the stabilographic trajectory data. This allows to reduce the data dimensionality and makes the analysis easier.
Moreover, three methods of angular-segment function parameterization are also presented in this study. The obtained results confirm the
usefulness of the proposed parameters for medical diagnoses.
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1. Introduction

Posturography is a unique clinical assessment technique that
is used to analyze human postural stability [1, 2]. In static
posturography, a patient stands in an upright position on a
stationary force test platform. During the trial time, which
lasts from 30 to 120 seconds, the ground reaction forces, gen-
erated by the subject, are continuously registered. Then, with
the aid of elementary Newtonian mechanics, these forces are
used to calculate the coordinates Ti (x[i], y[i]) of the center of
pressure (CoP) over the platform surface. A plot of the time-
varying coordinates of the CoP is known as a stabilogram
or, sometimes, as a posturographic/stabilographic trajectory.
As an example, Fig. 1 shows the CoP trajectory of a healthy
person along with its individual components, in the anterior-
posterior (AP) and medial-lateral (ML) directions.

Today, static posturography is used widely in the evalua-
tion of the human balance system. It allows the relationships
that exist among all of the components of the human balance
system to be examined (the human balance system consists
of three distinct systems that work together – the Vestibular,
the Visual and the Somatic Sensory System). A comprehen-
sive study of the biomechanical models of balance with an
emphasis on the fundamental issues can be found in [3]. It
should be also noted that many authors have investigated the
relationship between balance disorders and the properties of
stabilographic trajectories [4, 5]. Moreover, in recent years
much attention has been paid to the application of static pos-
turography in the field of rehabilitation e.g. to the diagnosis
of posture defects, postural re-education and the assessment
of rehabilitation progress [6–8].

a) b)

Fig. 1. An example of a stabilogram (a) and its components (b)
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2. Cumulative angular-segment function

For the diagnosis of some skeletal diseases, the CoP trajectory
shape is more significant than its size. In order to make the
comparison of trajectory shapes and the analysis easier, a one-
dimensional function describing the trajectory curve has been
developed. The proposed cumulative angular-segment func-
tion (ASF) was inspired by the cumulative angular function
used for the recognition and classification of closed curves.
The overall length of a closed curve (e.g. a cell contour) is di-
vided into N parts by marking N equally-spaced points on it.
Starting from zero, the successive values of the cumulative
angular function are obtained by calculating the differences
between the inclination angle values of the vectors corre-
sponding to the successive points marked on the curve and
then adding those differences up. At the end of the contour,
after returning to the starting point, we get the cumulative an-
gular function value equal to 2π. Assuming that the sampling
of the successive function values runs at a constant rate and is
not limited to a single cycle, we get the periodical cumulative
angular function. After the Fourier expansion of that func-
tion, we get the amplitudes and phases of harmonics, which
can be applied for the classification of the trajectory shape,
irrespective of its size [9].

Although the stabilographic trajectory is an open and
discrete-time curve, the trajectory cumulative angular func-
tion still contains information about the trajectory shape. The
distances between the following Ti (xT [i], yT [i]) measured
points of the original CoP trajectory depend on the body sway
speed and they differ from each other. In order for the trajecto-
ry shape to be reproduced by the cumulative angular function,
it is necessary for the distances between the successive trajec-
tory points to be constant. Therefore, the cumulative angular
function cannot be calculated directly from the original trajec-
tory points. The equally-spaced points must first be appointed
on the original trajectory and the so-called recalculated tra-
jectory has to be defined in this manner.

Two algorithms for converting the original trajectory in-
to the recalculated one were developed. The distance or path
length L (along the original trajectory) between each of two
consecutive points Kj (xK [j], yK [j]) and Kj+1 (xK [j + 1],
yK [j + 1]) of the recalculated trajectory is constant. The re-
calculated trajectory has the same shape as the original one.
In order to compare only the trajectory shapes and not their
sizes, the distance L should be derived from the original tra-
jectory length (TL) using the following formula:

L = TL/N, (1)

where N – number of recalculated trajectory points (usually
equal to the number of the original trajectory points).

2.1. Cumulative angular-segment function ASFα with

a constant distance between the recalculated consecutive

trajectory points. The cumulative angular-segment function
ASFα was defined for the constant distance L between the
consecutive points of the recalculated trajectory. The formu-
la (2) presents the discrete angular increments of ASFα.







ASFα[1] = 0

ASFα[j + 1] = ASFα[j] + ∆α[j] for j = 1, 2, 3 ...

(2)
While moving from one point to another, the trajectory can
turn right or left. The discrete angular increment satisfies the
inequality 0 < ∆α[j] < π when the trajectory “turns left”
and −π < ∆α[j] < 0 when the trajectory “turns right”. The
trajectory can turn many times in the same direction. As a
result, the ASFα function values are not limited to the range
of [0..2π). The ∆α[j] increment can be calculated using the
following formulas:






∆α[j] = α∗[j + 1] − α[j] for α∗[j + 1] − α[j] ≤ π

∆α[j] = α∗[j + 1] − α[j] − 2π for α∗[j + 1] − α[j] > π

where






α∗[j + 1] = α[j + 1] for α[j + 1] ≥ α[j]

α∗[j + 1] = α[j + 1] + 2π for α[j + 1] < α[j]

(3)

For example, when α[j] = 0.1π and α[j + 1] = 1.8π,
∆α[j] = −0.3π. The angle α[j + 1] with the value in the
range from 0 to 2π is the angle between the x-axis and the
vector connecting the two successive points of the recalculat-
ed trajectory:







α[1] = 0

α[j + 1] = ∠

(

0x,
−−−−−→
KjKj+1

)

for j = 1, 2, 3 ...
(4)

Points Kj and Kj+1 of the recalculated trajectory lie on the
original trajectory and the distance (L) between them is con-
stant. Depending on the value L and the distance between the
successive points of the original trajectory, the points Kj and
Kj+1 can either lie or not lie on the same segment of the
original trajectory. For example, if the point Kj lies on the
i-th segment of the original trajectory, the point Kj+1 can lie
on the i-th or the i+1-th or the i+2-th ... segment.

The coordinates of the points Kj and Kj+1 should satisfy
the following conditions:

Kj ∈ Si, Kj+1 ∈ r(Kj , L) ∩ Sn,

n = min {k : k ≥ i, Sk ∩ r(Kj , L) 6= ∅} ,
(5)

where L = dist(Kj , Kj+1) is the distance between the points
Kj and Kj+1, Si is the i-th segment of the original trajectory
connecting the points Ti and Ti+1, Sk is the k-th segment of
the original trajectory (k ≥ i) connecting the points Tk and
Tk+1, r(Kj , L) is the circle with the center at the point Kj

and the radius L.
Sometimes two points satisfy the formula (5). In this case,

the point Kj+1 is chosen as that, whose distance to the orig-
inal trajectory point Tk is smaller.

The developed algorithm processes the original trajectory
point coordinates in a sequential way starting from the first
one. Two cases are possible. The current and next points of
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the recalculated trajectory (Kj and Kj+1) lie (Fig. 2b) or do
not lie (Fig. 2a) on the same segment connecting two consec-
utive points (Ti and Ti+1) of the original trajectory. Figure 2c
shows both a part of the recalculated trajectory and the origi-
nal trajectory for the distance value L equal to the mean value

of the distances between each consecutive pair of the original
trajectory points.

As an example, Fig. 3 shows the ASFα characteristic of
a healthy subject and a subject who has some disturbances of
balance.

a) b) c)

Fig. 2. Graphical illustration of the function ASFα calculation – points Kj , Kj+1 of the recalculated trajectory lie (b) or do not lie (a) on
the same original trajectory segment; (c) an example of the recalculated trajectory and the original one

a)

b)

Fig. 3. The ASFα obtained from a healthy subject (top) and from a subject who has some disturbances of balance (bottom)
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2.2. Cumulative angular-segment function ASFβ with a

constant path length between the recalculated consecutive

trajectory points. The definition of the cumulative angular-
segment function ASFβ calculated for a constant path length
L (measured along the original trajectory) between the recal-
culated consecutive trajectory points is identical to the ASFα
definition – the angle α[j] should only be replaced with the
angle β[j] in formulas (2), (3) and (4). However, the algorithm
that converts the original trajectory into the recalculated one
is different. Now, the distance between recalculated consec-
utive trajectory points is not constant (as it was for ASFα);
however, their path length L measured along the original tra-
jectory is constant. For example, if the point Kj lies on the
original trajectory between the points Ti and Ti+1 and L is
smaller than the distance between the points Kj and Ti+1,
the point Kj+1 will lie between Ti and Ti+1. Otherwise, the
value of dist(Kj , Ti+1) has to be increased by the value of
dist(Ti+1, Ti+2) and if this sum is bigger than L, the point
Kj+1 will lie between the points Ti+1 and Ti+2. If the sum
mentioned above is still smaller than L, it will be increased by
the length of the successive segment of the original trajectory.

So Kj and Kj+1 point coordinates can be calculated from
the following equations:





















































































































































































































dist (Kj , Kj+1) = L ; n = i

for

L ≤ dist (Kj , Ti+1)

dist (Kj , Ti+1) + dist (Ti+1, Kj+1) = L ; n = i + 1

for

dist (Kj , Ti+1) < L ≤ dist (Kj , Ti+1) + dist (Ti+1, Ti+2)
...8>>>>>>>>><>>>>>>>>>:

dist (Kj , Ti+1)+
mP

l=1

dist (Ti+l, Ti+l+1)

+ dist (Ti+m+1, Kj+1) = L; n = i + m + 1

for

dist (Kj , Ti+1) + dist (Ti+1, Ti+2)

< L ≤ dist (Kj , Ti+1) +
m+1P
l=1

dist (Ti+l, Ti+l+1)

Kj ∈ Si, Kj+1 ∈ Sn

(6)

where j = 1, 2, ..., is an index of the successive point Kj

of the recalculated trajectory, i = 1, 2, ..., is an index of the
successive point Ti of the original trajectory, Si is the i-th
segment of the original trajectory connecting the points Ti

and Ti+1, Sn is the n-th segment of the original trajectory
(n ≥ i) connecting the points Tn and Tn+1, m is the num-
ber of complete segments of the original trajectory included
in the path L between one recalculated trajectory point and
another.

Figure 4 shows two possible cases for the processing al-
gorithm. The current and next points of the recalculated tra-
jectory (Kj and Kj+1) lie (Fig. 4b) or do not lie (Fig. 4a) on
the same segment connecting two consecutive points (Ti and
Ti+1) of the original trajectory. Figure 4c shows a part of the
recalculated trajectory and the original one.

a) b)

c)

Fig. 4. Graphical illustration of the function ASFβ calculation –
points Kj , Kj+1 of the recalculated trajectory lie (b) or do not lie
(a) on the same original trajectory segment; (c) an example of the

recalculated trajectory and the original one

The posturographic examinations carried out on three
groups (see Sec. 4) allow us to formulate some conclusions
concerning the properties of the angular-segment function.
In studies of healthy subjects, the signal shows a relative-
ly low variability between subjects. Moreover, similar, local
time structures occur repeatedly, and the amplitude of local
fluctuations is relatively low. In some balance disorders, char-
acteristic plateau-like structures are observed in the analyzed
ASF signal. Additionaly, the amplitude of local fluctuations
is higher compared with those of healthy subjects.

3. Angular-segment function parameterization

A number of methods based on the CoP displacement have
been used in clinical contexts to examine postural stability.
Due to the time-consuming nature of a visual analysis, many
techniques are applied to trajectory parameterization. The
classical posturographic parameters, most commonly found
in the literature, describe the geometry of the trajectory (e.g.
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length and area of the trajectory) [10, 11]. Another possi-
bility is to analyze the frequency or time-frequency content
of the trajectory components [12, 13]. In some experimental
studies, the posturographic signal is analyzed using the fractal
theory [14].

In the proposed method, the CoP trajectories are studied
as one-dimensional signals that are obtained using the method
outlined in Sec. 2. For this reason, it is necessary to define the
parameters that characterize the angular-segment function. In
this study, three methods are proposed for this purpose.

3.1. Angular-segment function duty coefficient. In this
work, a new parameter to quantify human postural stability,
the angular-segment function duty coefficient (DC), is intro-
duced. The DC parameter was designed to detect patients with
an increased risk of falling down. The idea arises from the
observation that a sudden loss of balance causes a plateau in
the angular-segment function. The plateau is relatively easy
to detect by calculating the finite differences of the ASF (to
obtain the signal ASF’) and then performing hard threshold-
ing. The hard thresholded signal is ASF’ if ASF’ > THR,
and is 0 if ASF’ ≤ THR, where THR is the threshold level.
In the present work, the threshold level was set to the value
that corresponds to 5% of the maximum value of the ASF’.
In the next step, a sum of the lengths of the non-zero seg-
ments is calculated. Finally, the value of the parameter DC is
calculated as:

DC = (1/N)
∑

i

Li, (7)

where Li – length of the i-th segment, N – total length of
the angular-segment function (number of signal samples).

3.2. Mean energy per sample. Another parameter proposed
in the paper describes the mean energy per sample of the
thresholded ASF’ signal. Because the methods ASFα and
ASFβ generate signals of different lengths, the signal energy
is divided by the length of the signal to find the parameter E:

E = (1/N)

N−1
∑

i=0

(ASF ′[i])
2
, (8)

where ASF′[i] – samples of the thresholded version of the sig-
nal ASF’, N – length of the signal (number of signal samples).

3.3. Hurst exponent. Many different parameterization meth-
ods based on the displacement of the CoP have been proposed
in literature [1, 2]. An interesting framework for studying pos-
tural stability is presented in [10, 14]. The underlying idea of
this approach is to model the stabilogram as the fractional
Brownian motion (fBm). The fractional Brownian motion is
a generalization of the well-known ordinary Brownian mo-
tion [15]. The fBm is a continuous Gaussian process, which
is characterized by a single parameter H , called the Hurst
exponent, that is in the range of 0 to 1. The value H < 0.5
corresponds to antipersistent motion, where the process has
a tendency to turn back upon itself. H = 0.5 corresponds to
the standard Brownian motion. When the parameter H > 0.5,

fBm is persistent. This means that the motion has a tendency
to continue movement in the same direction.

Many approaches can be used to determine the value of
the Hurst exponent. The relevant background information on
the topic is presented in [15, 16]. One of the most important
properties of fBm is its “self-similarity”, which means that
any portion of a given fBm can be viewed from a statistical
point of view as a scaled version of a larger part of the same
realization. Due to the self-similarity properties of fBm, an
intuitive approach is to analyze this process using time-scale
methods. An obvious way of performing such an analysis is
to use a wavelet transform. As was shown in [15], the value
of the Hurst exponent can be obtained by carrying out the
discrete wavelet transform of an analyzed signal and calculat-
ing the slope of the variance plotted as a function of scale in
a log-log plot

log2 (var(dj,k)) = (2H + 1) j + C, (9)

where j – decomposition level, dj,k – detail coefficients, C –
constant that depends on the wavelet.

In this study, a six-level discrete decomposition with a
Daubechies wavelet of the order 6 was used to determine
the detail coefficients. Moreover, the linear least squares fit-
ting technique was applied to find the best fitting straight line
through a set of points in the log-log plot.

In a commonly used approach, the Hurst parameter is cal-
culated separately for the directions ML and AP [1]. For this
reason, the trajectory is described by two values, which causes
a problem with the interpretation of the result. In the proposed
method, the problem is solved by using ASF.

4. Results

A static force testing platform, designed and made at the In-
stitute of Electronics, Silesian University of Technology, was
used to record ground reaction forces [2]. The signals were
processed on a PC connected to the platform. The signals were
sampled at 20 ms intervals and the data for each postural task
were collected over 30 s. The subjects stood barefoot in an
upright position with their eyes open.

Posturographic examinations were performed in three
groups. The first group (HS) included 32 young, healthy sub-
jects. Children aged between 10 and 15 years, who suffered
from scoliosis (Cobb’s angle between 2 and 3), were in the
second group (SS). The last group (DBS) consisted of 30
patients exhibiting some disturbances of balance.

STATISTICA (StatSoft, USA) software was used for sta-
tistical analysis. In order to evaluate the normality of the distri-
bution, the Kolmogorov-Smirnov and Shapiro-Wilk tests were
performed. The Student’s unpaired t-test (for equal variances)
and Cochran-Cox (for unequal variances) were used to deter-
mine significant differences between the pairs of means. The
statistical significance level was established at P < 0.05.

4.1. Comparison of the methods used for angular-segment

function generation. The influence of different methods of
ASF function generation (ASFα and ASFβ) on the parameters
value is given in Table 1. The “+” sign indicates that there
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is no significant difference between the means (at statistical
significance level of 0.05).

Table 1
The influence of the angular-segment function generation method

on the parameter values

Group
Parameter

DC E H

HS − − +

DBS − − −

SS + + +

As we can see, there are no significant differences be-
tween the mean values of the parameters generated using both
methods for the scoliosis group (SS). This is because the an-
alyzed trajectories in that group were similar to each other.
A low intergroup variability was observed for selected pa-
tients with scoliosis (Cobb’s angle between 2 and 3). In other
cases, the parameter values generally depended on the method
of angular-segment function generation.

4.2. Discriminative potential of parameters. In order to ex-
amine the discriminative potential of the parameters, a statis-
tical hypothesis test for an equality of mean values was per-
formed. The obtained results are shown in Table 2. The “−”
sign indicates that there is a significant difference between the
means.

Table 2
The discriminative potential of the parameters

Group
DBS SS

ASFα ASFβ ASFα ASFβ

HS
H –

DC –
E –

H –
DC –
E –

H –
DC –
E +

H –
DC –
E +

DBS
H –

DC –
E –

H +
DC –
E –

The analysis of the human postural stability using the pa-
rameter DC shows very promising results. Regardless of the

method used to generate angular-segment function, statistical-
ly significant differences were found between the mean values
of the parameter for each group.

In the case of the method ASFα, the results obtained for
the Hurst parameter showed significant differences between
the mean values of the parameter. On the basis of the pa-
rameter H , we are able to distinguish healthy subjects (HS)
from the subjects with a scoliosis (SS) and from the patients
exhibiting some disturbances of balance (DBS). There were
no significant differences between the mean values of the pa-
rameter calculated for patients with a disturbance of balance
(DBS) and scoliosis (SS) for the method ASFβ.

The parameter E does not allow the subjects to be proper-
ly distinguished. There are no significant differences between
the mean values of the parameter E observed in the groups HS
and SS. This phenomenon occurs in both methods – ASFα,
ASFβ. Thus, we are not able to distinguish healthy subjects
from patients with scoliosis based on the parameter E.

4.3. Reliability of parameters. The reliability of different
parameterization methods was studied by deriving the rela-
tive dispersion of the parameters, RD, defined as a ratio be-
tween the standard deviation and the mean for each group.
The calculations were performed for both methods – ASFα
and ASFβ. Table 3 summarizes the results.

A reliable parameter is characterized by a low value of RD.
Among the parameters, DC is the most reliable one, while E
is relatively stable. The value RD of the Hurst exponent ex-
hibits a relatively low reliability.

The high reliability of the parameter DC is proved by the
low value of the relative dispersion. The value of relative dis-
persion was smaller than RD calculated for the parameters H
and E in all cases. The deterioration of the DC reliability in
the DBS group results from the fact that the geometry of the
trajectories can differ remarkably from each other.

In each case, the relative dispersion of the parameter E
was smaller than RD calculated for the Hurst exponent. How-
ever, by comparing the relative dispersion of DC to the rela-
tive dispersion of the parameter E, it is clear that DC provides
better selectivity.

Table 3
The basic statistical parameters

Group
Parameter

DC E H

ASFα ASFβ ASFα ASFβ ASFα ASFβ

HS
m= 0.815
std= 0.021

std/m=0.0258

m= 0.833
std= 0.0196

std/m=0.0235

m= 3.0
std= 0.374

std/m=0.125

m= 3.504
std= 0.355

std/m=0.101

m= 0.236
std= 0.048

std/m=0.203

m= 0.227
std= 0.052

std/m=0.229

DBS
m= 0.556
std= 0.08

std/m=0.144

m= 0.621
std= 0.063

std/m=0.1014

m= 2.12
std= 0.427

std/m=0.201

m= 2.657
std= 0.348

std/m=0.131

m= 0.245
std= 0.068

std/m=0.277

m= 0.184
std= 0.08

std/m=0.435

SS
m= 0.793
std= 0.044

std/m=0.055

m= 0.806
std= 0.034

std/m=0.0422

m= 3.21
std= 0.744

std/m=0.232

m= 3.7
std= 0.7

std/m=0.189

m= 0.187
std= 0.07

std/m=0.374

m= 0.182
std= 0.045

std/m=0.247
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The information provided by the Hurst exponent seems
to be uncertain, so we were unable to attach any great di-
agnostic significance to the Hurst exponent. This opinion is
shared by other authors [11]. However, we must emphasize
that in the proposed approach, we analyzed the segment func-
tion using the fractional Brownian motion. In many papers
the fBm technique is used separately for directions AP and
ML [10, 14].

Generally, a lower value of the relative dispersion is ob-
served for the method ASFβ. This dependence is preserved
for two parameters – DC and E. However, it does not hold
for the Hurst exponent.

5. Conclusions

In this paper, we propose a method for the characterization
of stabilograms using the angular-segment function. In con-
trast to classical methods of analysis where postural stability
is quantified in terms of geometric properties of the stabilo-
gram (e.g. length and area of the stabilogram), the proposed
approach is based on a different technique. It has been shown
that the CoP trajectory can be described in an alternative way,
using a one-dimensional angular-segment function. The ob-
tained results confirm that this function is a valuable tool in
the characterization of stabilographic trajectories. It is also
worth noting that the proposed method reduces dimensional-
ity of the problem.

In Sec. 2 we provide a detailed description of the two al-
gorithms used to determine the angular-segment function. The
first variant, named ASFα, assumes the constant distance be-
tween recalculated trajectory points, while the second, ASFβ,
assumes a constant path length along the trajectory.

In the paper, special attention has been paid to the develop-
ment of the methods for the parameterization of the angular-
segment function. For this reason, we proposed three parame-
ters: DC, E, H . A detailed study was performed to explore
the discriminative potential and reliability of the proposed pa-
rameters. As it has been shown, among the parameters, the
parameter DC offers the best performance by delivering a high
discriminative potential and high reliability. Moreover, the in-
fluence of the methods used to generate the angular-segment
function on the parameterization result has been examined.
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