PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Estimation of Screw Displacement Pile-Bearing Capacity Based on Drilling Resistances

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
19th KKMGiIG
Języki publikacji
EN
Abstrakty
EN
This article presents an engineering, empirical method of estimating the bearing capacity and settlement characteristics Q-s of screw displacement piles and columns, based on soil resistance encountered during the drilling to form piles/columns in the ground. The method was developed on the basis of correlation analyses of the test results of 24 piles made during the "DPDT-Auger" research project (Krasiński et al., 2022a). In the proposed method, the load capacity of a screw displacement pile is estimated using two main parameters of auger screwing resistance: torque MT and the number of auger rotations per depth unit nR. The method applies to piles and columns made with a standard screw displacement pile (SDP) auger and with the proprietary, prototype DPDT (displacement pile drilling tool) aguer, patented in Poland (2020). Based on the estimated ultimate capacities of the pile shaft and base, an approximate method of predicting the pile settlement characteristics Q-s was also proposed, using the transfer function method. This article describes a correlation procedure of field test results together with their statistical analysis and presents a method of estimating the pile-bearing capacity based on correlation results. A calculation example is also provided. The conclusion looks at the useful practical applications that could be found for the proposed method.
Wydawca
Rocznik
Strony
282--292
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
Bibliografia
  • [1] Basu P., Prezzi M. (2009): Design and Applications of Drilled Displacement (Screw) Piles. Publication FHWA/IN/JTRP-2009/28. West Lafayette: Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, http://docs.lib.purdue.edu/cgi/viewcontent.cgi.
  • [2] Bottiau M. (2006): Recent evolutions in deep foundation technologies. Proceedings of the DFI/EFFC 10th Int. Conf. On Piling and Deep Foundations, Amsterdam.
  • [3]. Bustamante, M. and Gianeselli, L. (1998). Installation parameters and capacity of screwed piles. Proc. of Deep foundations on bored and auger piles, BAP III, Balkema, Rotterdam.
  • [4] Gwizdała K. (2010): Fundamenty palowe. Tom 1: Technologie i obliczenia (Pile foundations. Tom 1: Technologies and calculations). Warszawa: PWN, 297.
  • [5] Holeyman A.E. (2001): Screw piles – installation and design in stiff clay. Proc. of the Symp. on Screw Piles, Brussels, Belgium, Swets and Zeitlinger B.V., Lisse, 323.
  • [6] Holeyman, A. and Skov, R. (2003). Implementation of dynamic testing, Driving formulae, Monitoring and Quality design in pile design, Geotechnical problems with man-made and man influenced grounds. Proc. of the 13th European Conference on Soil Mechanics and Geotechnical Engineering, 25–28 August, Praha, Czech Republic, Vol. 3, 702–714.
  • [7] Kobrzyńska K., Kanty P., Jakubowski K. (2018). Analiza kalibracji wyników sondowań CPT z próbnymi odwiertami kolumn przemieszczeniowych CMC (Calibration analysis of CPT results with test drillings of CMC displacement columns). Przegląd Naukowy, Inżynieria i Kształtowanie Środowiska, 27(2). DOI: 10.22630/PNIKS.2018.27.2.17
  • [8] Konkol J. (2023), Incorporating installation effects into the probability analysis of controlled modulus columns. Soils and Foundations 63 (1), 101266, https://doi.org/10.1016/j.sandf.2022.101266
  • [9] Krasiński A. (2013). Pale przemieszczeniowe wkręcane. Współpraca z niespoistym podłożem gruntowym (Screw displacement piles. Bearing capacity and work in non-cohesive soils). (Habilitation thesis), Monografie Nr 134, Wydawnictwo Politechniki Gdańskiej, Gdańsk, 250 s.
  • [10] Krasiński A. (2014). The analysis of soil resistance during screw displacement pile installation. Studia Geotechnica et Mechanica, Vol. XXXVI, No. 3, 49–56, DOI: 10.2478/sgem-2014-0026.
  • [11] Krasiński A., Więcławski P., Kusio T., Wiszniewski M., Tisler W. (2022a). Raport końcowy z projektu badawczego „DPDT-Auger”, nr POIR.04.01.04-00-0124/18 „Opracowanie metody i narzędzi do wykonywania kolumn/pali przemieszczeniowych wkręcanych w różnorodnych warunkach gruntowych na obszarze Polski wraz z przygotowaniem metodyki do projektowania i odbioru robót”. (Final report from research project „DPDT-Auger”, nr POIR.04.01.04-00-0124/18 „Development of a method and tools for the installation of screw displacement columns/piles in various ground conditions in Poland, together with the preparation of a methodology for the design and acceptance of works”) (Unpublished data). Opracowanie tekstowe. Gdansk University of Technology. Gdansk, Poland.
  • [12] Krasiński A., Więcławski P., Wiszniewski M., Kusio T. (2022b). Model tests of cast-in-place piles formed by using different types of auger. Proc. of the 20th Int. Conf. on Soil Mechanics and Geotechnical Engineering, Australian Geomechanics Society, Sydney, 1227–1232.
  • [13] Krasiński A., Więcławski P., Kusio T., Wiszniewski M., Tisler W. (2023). Results of the „DPDT-Auger” research project on screw displacement piles. (Forthcoming), Architecture, Civil Engineering, Environment (ACEE).
  • [14] Maertens J., Huybrechts N. (2003): Belgian screw pile technology. Design and recent developments. Proc. of the Second Symp. on Screw Piles, Brussels: 2003. Swets and Zeitlinger B.V., Lisse, 349.
  • [15] Nesmith W.M. (2003). Installation effort as an indicator of displacement screw pile capacity. Deep Foundation on Bored and Auger Piles, BAP IV, Van Impe (ed.), Millpress, Rotterdam, 177–181.
  • [16] Nesmith Jr. W.M., Nesmith W.M. (2008). Installation effort: current calculation methods and uses in design and construction in the US. Deep Foundation on Bored and Auger Piles, BAP V, Ghent, Belgium.
  • [17] Pucker T., Grabe J. (2012). Numerical simulation of the installation process of full displacement piles. Computers and Geotechnics, 45, 93–106, http://dx.doi.org/10.1016/j.compgeo.2012.05.006
  • [18] Robertson, P.K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1): 151–158.
  • [19] Sakr, M. (2014): Relationship between installation torque and axial capacities of helical piles in cohesionless soils. Canadian Geotechnical Journal, 52(6), 747–759, https://doi.org/10.1139/cgj-2013-0395.
  • [20] Saleem, M.A., Malik, A.A. and Kuwano, J. (2020). End shape and rotation effect on steel pipe pile installation effort and bearing resistance. Geomechanics and Engineering, 23(6), 523–533. https://doi.org/10.12989/gae.2020.23.6.523.
  • [21] Trojnar K., Siry A. (2019). Assessment of the resistance of displacement piles based on measurement of selected drilling parameters. Proc. of the 3rd Int. Conf. CGE, Zielona Góra.
  • [22] Tsuha, C.H.C., Aoki, N. (2010): Relationship between installation torque and uplift capacity of deep helical piles in sand. Canadian Geotechnical Journal, 47(6), 635–647, https://doi.org/10.1139/T09-128.
  • [23] VAN IMPE, W.F. (2001). Considerations on the influence of screw pile installation parameters on the overall pile behaviour. Screw piles – installation and design in stiff clay. Holeyman ed., Swets&Zeitlinger, Lisse, 127–149.
  • [24] Opis patentowy Nr PL 235442 B1 (2020): Świder do wykonywania pali przemieszczeniowych wkręcanych. (Patent description No. PL 235442 B1: Drill for screw displacement piles execusion). Patent Office of the Republic of Poland, 10.08.2020, Warsaw, Poland.
  • [25] PN-EN:1997-1:2008 - Eurocode 7: Geotechnical design – Part 1: General rules. European/Polish Committee for Standardization, Brussels/Warsaw.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-678acfd1-af4b-4775-8f93-85e5dce93877
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.